Skip to main content
Log in

On the Nonhomogeneous Boundary Value Problem for the Navier–Stokes System in a Class of Unbounded Domains

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

The stationary Navier–Stokes system with nonhomogeneous boundary conditions is studied in a class of domains Ω having “paraboloidal” outlets to infinity. The boundary \({\partial\Omega}\) is multiply connected and consists of M infinite connected components S m , which form the outer boundary, and I compact connected components Γ i forming the inner boundary Γ. The boundary value a is assumed to have a compact support and it is supposed that the fluxes of a over the components Γ i of the inner boundary are sufficiently small. We do not pose any restrictions on fluxes of a over the infinite components S m . The existence of at least one weak solution to the Navier–Stokes problem is proved. The solution may have finite or infinite Dirichlet integral depending on geometrical properties of outlets to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amick Ch.J.: Existence of solutions to the nonhomogeneous steady Navier–Stokes equations. Indiana Univ. Math. J. 33, 817–830 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borchers W., Pileckas K.: Note on the flux problem for stationary Navier–Stokes equations in domains with multiply connected boundary. Acta Appl. Math. 37, 21–30 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Farwig, R., Kozono, H., Yanagisawa, T.: Leray’s inequality in general multi-connected domains in \({\mathbb{R}^n}\) . Math. Ann. Preprint No. 2611 (2010)

  4. Finn R.: On the steady-state solutions of the Navier–Stokes equations III. Acta Math. 105, 197–244 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fujita H.: On the existence and regularity of the steady-state solutions of the Navier–Stokes theorem. J. Fac. Sci. Univ. Tokyo Sect. I 9, 59–102 (1961)

    MathSciNet  MATH  Google Scholar 

  6. Fujita, H.: On stationary solutions to Navier–Stokes equation in symmetric plane domain under general outflow condition, Pitman research notes in mathematics. In: Proceedings of International conference on Navier–Stokes equations. Theory and numerical methods. June 1997. Varenna, Italy, vol. 388, pp. 16–30 (1997)

  7. Fujita H., Morimoto H.: A remark on the existence of the Navier–Stokes flow with non-vanishing outflow condition. GAKUTO Internat. Ser. Math. Sci. Appl. 10, 53–61 (1997)

    MathSciNet  Google Scholar 

  8. Galdi G.P.: On the existence of steady motions of a viscous flow with non-homogeneous conditions. Le Matematiche 66, 503–524 (1991)

    MathSciNet  Google Scholar 

  9. Galdi G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol I, II revised edition. In: Truesdell, C. (eds) Springer Tracts in Natural Philosophy, vols 38, 39, Springer, Berlin (1998)

    Google Scholar 

  10. Heywood J.G.: On uniqueness questions in the theory of viscous flow. Acta. Math. 136, 61–102 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Heywood, J.G.: On the impossibility, in some cases, of the Leray–Hopf condition for energy estimates. J. Math. Fluid Mech. Online first (2010). doi:10.1007/s00021-010-0028-8

  12. Hopf E.: Ein allgemeiner Endlichkeitssats der Hydrodynamik. Math. Ann. 117, 764–775 (1941)

    Article  MathSciNet  Google Scholar 

  13. Kapitanskii, L.V., Pileckas, K.: On spaces of solenoidal vector fields and boundary value problems for the Navier–Stokes equations in domains with noncompact boundaries. Trudy Mat. Inst. Steklov 159, 5–36 (1983). English Transl.: Proc. Math. Inst. Steklov 159, 3–34 (1984)

    Google Scholar 

  14. Korobkov, M.V., Pileckas, K., Russo, R.: On the flux problem in the theory of steady Navier–Stokes equations with nonhomogeneous boundary conditions. Revised 28 Oct 2011. arXiv:1009.4024v2 [math-ph]

  15. Korobkov, M.V., Pileckas, K., Russo, R.: The existence theorem for steady Navier–Stokes equations in the axially symmetric case. 28 Oct 2011. arXiv:1110.6301v1 [math-ph]

  16. Kozono H., Yanagisawa T.: Leray’s problem on the stationary Navier–Stokes equations with inhomogeneous boundary data. Math. Z. 262(1), 27–39 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ladyzhenskaya O.A.: Investigation of the Navier–Stokes equations in the case of stationary motion of an incompressible fluid. Uspech Mat. Nauk 3, 75–97 (1959) (in Russian)

    Google Scholar 

  18. Ladyzhenskaya O.A.: The Mathematical Theory of Viscous Incompressible Fluid. Gordon and Breach, New York (1969)

    Google Scholar 

  19. Ladyzhenskaya, O.A., Solonnikov, V.A.: On some problems of vector analysis and generalized formulations of boundary value problems for the Navier–Stokes equations. Zapiski Nauchn. Sem. LOMI 59, 81–116 (1976). English Transl.: J. Sov. Math. 10, No. 2, 257–285 (1978)

    Google Scholar 

  20. Ladyzhenskaya, O.A., Solonnikov, V.A.: On the solvability of boundary value problems for the Navier-Stokes equations in regions with noncompact boundaries. Vestnik Leningrad. Univ. 13 (Ser. Mat. Mekh. Astr. vyp. 3), 39–47 (1977). English Transl.: Vestnik Leningrad Univ. Math. 10, 271–280 (1982)

  21. Ladyzhenskaya, O.A., Solonnikov, V.A.: Determination of the solutions of boundary value problems for stationary Stokes and Navier–Stokes equations having an unbounded Dirichlet integral. Zapiski Nauchn. Sem. LOMI 96, 117–160 (1980). English Transl.: J. Sov. Math., 21(5), 728–761 (1983)

  22. Landau L.D., Lifschitz E.M.: Electrodynamics of Continuous Media. Pergamon, UK (1960)

    MATH  Google Scholar 

  23. Leray J.: Étude de diverses équations intégrales non linéaire et de quelques problèmes que pose l’hydrodynamique. J. Math. Pure Appl. 12, 1–82 (1933)

    MathSciNet  MATH  Google Scholar 

  24. Morimoto H., Fujita H.: A remark on the existence of steady Navier–Stokes flows in 2D semi–infinite channel infolving the general outflow condition. Mathematica Bohemica 25(2), 307–321 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Morimoto H., Fujita H.: A remark on the existence of steady Navier–Stokes flows in a certain two–dimensional infinite channel. Tokyo J. Math. 126(2), 457–468 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Morimoto, H., Fujita, H.: Stationary Navier–Stokes flow in 2–dimensional Y–shape channel under general outflow condition. The Navier–Stokes Equations: Theorey and Numerical Methods. Lecture Note in Pure and Applied Mathematics, Marcel Decker (Morimoto Hiroko, Other) 223, 65–72 (2001)

  27. Morimoto, H.: Stationary Navier–Stokes flow in 2–D channels infolving the general outflow condition. Handbook of differential equations: stationary partial differential equations. Elsevier 4 Ch. 5, 299–353 (2007)

    Google Scholar 

  28. Morimoto H.: A remark on the existence of 2–D steady Navier–Stokes flow in bounded symmetric domain under general outflow condition. J. Math. Fluid Mech. 9(3), 411–418 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Nazarov S.A., Pileckas K.: On the solvability of the Stokes and Navier–Stokes problems in domains that are layer–like at infinity. J. Math. Fluid Mech. 1(1), 78–116 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Neustupa J.: On the steady Navier–Stokes boundary value problem in an unbounded 2D domain with arbitrary fluxes through the components of the boundary. Ann. Univ. Ferrara 55(2), 353–365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Neustupa J.: A new approach to the existence of weak solutions of the steady Navier–Stokes system with inhomoheneous boundary data in domains with noncompact boundaries. Arch. Rational Mech. Anal 198(1), 331–348 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Pileckas K.: Asymptotics of solutions of the stationary Navier–Stokes system of equations in a domain of layer type. Sb. Math. 193(12), 1801–1836 (2002)

    Article  MathSciNet  Google Scholar 

  33. Pileckas, K.: Navier–Stokes system in domains with cylindrical outlets to infinity. Leray’s problem. Handbook of Mathematical Fluid Dynamics. Elsevier 4 Ch. 8, 445–647 (2007)

  34. Pileckas K., Specovius–Neugebauer M.: Asymptotics of solutions to the Navier–Stokes system with nonzero flux in a layer-like domain. Asympt. Anal. 69(3–4), 219–231 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Pukhnachev V.V.: Viscous flows in domains with a multiply connected boundary. In: Fursikov, A.V., Galdi, G.P., Pukhnachev, V.V. (eds) New Directions in Mathematical Fluid Mechanics. The Alexander V. Kazhikhov Memorial Volume, pp. 333–348. Birkhauser, Basel (2009)

    Chapter  Google Scholar 

  36. Pukhnachev, V.V.: The Leray problem and the Yudovich hypothesis, Izv. vuzov. Sev.–Kavk. region. Natural sciences. The special issue “Actual problems of mathematical hydrodynamics”, pp. 185–194 (in Russian) (2009)

  37. Russo R.: On the existence of solutions to the stationary Navier–Stokes equations. Ricerche Mat. 52, 285–348 (2003)

    MathSciNet  MATH  Google Scholar 

  38. Russo A.: A note on the two-dimensional steady-state Navier–Stokes problem. J. Math. Fluid Mech. 52, 407–414 (2009)

    Article  Google Scholar 

  39. Russo A., Starita G.: On the existence of steady-state solutions to the Navier–Stokes system for large fluxes. Ann. Scuola Norm. Sup. Pisa 7, 171–180 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Sazonov, L.I.: On the existence of a stationary symmetric solution of the two-dimensional fluid flow problem. Mat. Zametki 54, No. 6, 138–141 (1993). English Transl.: Math. Notes, 54, No. 6, 1280–1283 (1993)

  41. Solonnikov, V.A., Pileckas, K.: Certain spaces of solenoidal vectors and the solvability of the boundary value problem for the Navier-Stokes system of equations in domains with noncompact boundaries, Zapiski Nauchn. Sem. LOMI 73, 136–151 (1977). English Transl.: J. Sov. Math. 34, No. 6, 2101–2111 (1986)

  42. Solonnikov V.A.: On the solvability of boundary and initial-boundary value problems for the Navier–Stokes system in domains with noncompact boundaries. Pacif. J. Math. 93(2), 443–458 (1981)

    MathSciNet  MATH  Google Scholar 

  43. Solonnikov V.A.: Stokes and Navier–Stokes equations in domains with noncompact boundaries, Nonlinear partial differential equations and their applications. Pitmann Notes in Math., College de France Seminar 3, 240–349 (1983)

    MathSciNet  Google Scholar 

  44. Solonnikov, V.A.: On solutions of stationary Navier–Stokes equations with an infinite Dirichlet integral, Zapiski Nauchn. Sem. LOMI 115, 257–263 (1982). English Transl.: J. Sov. Math., 28 No.5, 792–799 (1985)

  45. Solonnikov, V.A.: Boundary and initial-boundary value problems for the Navier–Stokes equations in domains with noncompact boundaries, Math. Topics in Fluid Mechanics. In: Rodriques, J.F., Sequeira, A. (ed.) Pitman Research Notes in Mathematics Series, vol. 274, pp. 117–162 (1991)

  46. Solonnikov, V.A.: On problems for hydrodynamics of viscous flow in domains with noncompact boundaries, Algebra i Analiz 4(6), 28–53 (1992). English Transl.: St. Petersburg Math. J. 4(6) (1992)

  47. Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  48. Takashita A.: A remark on Leray’s inequality. Pacif. J. Math. 157, 151–158 (1993)

    Google Scholar 

  49. Vorovich I.I., Judovich V.I.: Stationary flows of a viscous incompres-sible fluid. Mat. Sbornik 53, 393–428 (1961) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pileckas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaulakytė, K., Pileckas, K. On the Nonhomogeneous Boundary Value Problem for the Navier–Stokes System in a Class of Unbounded Domains. J. Math. Fluid Mech. 14, 693–716 (2012). https://doi.org/10.1007/s00021-011-0089-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-011-0089-3

Mathematics Subject Classification (2010)

Keywords

Navigation