Skip to main content
Log in

Kadison’s Pythagorean Theorem and Essential Codimension

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Kadison’s Pythagorean theorem (Proc Natl Acad Sci USA, 99(7):4178–4184, 2002; Proc Natl Acad Sci USA 99(8):5217–5222, 2002) provides a characterization of the diagonals of projections with a subtle integrality condition. Arveson (Proc Natl Acad Sci USA 104(4):1152–1158, 2007), Kaftal, Ng, Zhang (J Funct Anal 257(8):2497–2529, 2009), and Argerami (Integral Equ Oper Theory 82(1):33–49, 2015) all provide different proofs of that integrality condition. In this paper we interpret the integrality condition in terms of the essential codimension of a pair of projections introduced by Brown et al. (Proceedings of a conference on operator theory, Lecture notes in mathematics, Springer, Berlin, 1973), or, equivalently of the index of a Fredholm pair of projections introduced by Avron, Seiler and Simon (J Funct Anal 120(1):220–237, 1994). The same techniques explain the integer occurring in the characterization of diagonals of selfadjoint operators with finite spectrum by Bownik and Jasper (Trans Am Math Soc 367(7):5099–5140, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrein, W., Sinha, K.B.: On pairs of projections in a Hilbert space. Linear Algebra Appl. 208/209, 425–435 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Argerami, M.: Majorisation and the carpenter’s theorem. Integral Equ. Oper. Theory 82(1), 33–49 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arveson, W.: Diagonals of normal operators with finite spectrum. Proc. Natl. Acad. Sci. USA 104(4), 1152–1158 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Avron, J.E., Seiler, R., Simon, B.: The index of a pair of projections. J. Funct. Anal. 120(1), 220–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benameur, M.-T., Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A., Wojciechowski, K.P.: An analytic approach to spectral flow in von Neumann algebras. In: Lesch, M., Boo-Bavnbek, B., Klimek, S., Zhang, W. (eds.) Analysis, Geometry and Topology of Elliptic Operators, pp. 297–352. World Scientific Publishing, Hackensack (2006)

    Chapter  Google Scholar 

  6. Bownik, M., Jasper, J.: The Schur-Horn theorem for operators with finite spectrum. Trans. Am. Math. Soc. 367(7), 5099–5140 (2015)

    Article  MATH  Google Scholar 

  7. Brown, L.G.: Ext of certain free product \(C^{\ast } \)-algebras. J. Oper. Theory 6(1), 135–141 (1981)

    MATH  Google Scholar 

  8. Brown, L.G., Douglas, R.G., Fillmore, P.A.: Unitary equivalence modulo the compact operators and extensions of \(C^{\ast } \)-algebras. In: Fillmore, P.A. (ed.) Proceedings of a Conference on Operator Theory. Lecture Notes in Mathematics, vol. 345, pp. 58–128. Springer, Berlin (1973)

    Chapter  Google Scholar 

  9. Brown, L.G., Lee, H.H.: Homotopy classification of projections in the corona algebra of a non-simple \(C^*\)-algebra. Can. J. Math. 64(4), 755–777 (2012)

    Article  MATH  Google Scholar 

  10. Carey, A., Phillips, J.: Spectral flow in Fredholm modules, eta invariants and the JLO cocycle. K-Theory 31(2), 135–194 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carey, A., Phillips, J., Sukochev, F.A.: Spectral flow and Dixmier traces. Adv. Math. 173(1), 68–113 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The local index formula in semifinite von Neumann algebras. II. The even case. Adv. Math. 202(2), 517–554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Davis, C.: Separation of two linear subspaces. Acta Sci. Math. Szeged 19, 172–187 (1958)

    MathSciNet  MATH  Google Scholar 

  14. Dixmier, J.: Position relative de deux variétés linéaires fermées dans un espace de Hilbert. Revue Sci. 86, 387–399 (1948)

    MathSciNet  MATH  Google Scholar 

  15. Effros, E.G.: Why the circle is connected: an introduction to quantized topology. Math. Intell. 11(1), 27–34 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Halmos, P.R.: Two subspaces. Trans. Am. Math. Soc. 144, 381–389 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kadison, R.V.: The Pythagorean theorem I: the finite case. Proc. Natl. Acad. Sci. USA 99(7), 4178–4184 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kadison, R.V.: The Pythagorean theorem II: the infinite discrete case. Proc. Natl. Acad. Sci. USA 99(8), 5217–5222 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kaftal, V., Ng, P.W., Zhang, S.: Strong sums of projections in von Neumann factors. J. Funct. Anal. 257(8), 2497–2529 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kaftal, V., Weiss, G.: An infinite dimensional Schur–Horn Theorem and majorization theory. J. Funct. Anal. 259(12), 3115–3162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kato, T.: Perturbation Theory for Linear Operators. Die Grundlehren der mathematischen Wissenschaften, vol. 132. Springer, New York (1966)

    Book  Google Scholar 

  22. Kreĭn, M.G., Kranoselskiĭ, M.A., Milman, D.P.: Defect numbers of linear operators in banach space and some geometrical problems. Sobor. Trudov. Insst. Mat. Akad. Nauk SSSR 97–112 (1948)

  23. Strătilă, S.: Modular Theory in Operator Algebras. Editura Academiei Republicii Socialiste România, Bucharest. Abacus Press, Tunbridge Wells (1981). Translated from the Romanian by the author (1981)

    Google Scholar 

  24. Takesaki, M.: Theory of Operator Algebras. I. Encyclopaedia of Mathematical Sciences, vol. 124. Springer, Berlin (2002). Reprint of the first (1979) edition, Operator Algebras and Non-commutative Geometry, 5

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jireh Loreaux.

Additional information

This work was partially supported by the Simons Foundation Grant No. 245660 to Victor Kaftal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaftal, V., Loreaux, J. Kadison’s Pythagorean Theorem and Essential Codimension. Integr. Equ. Oper. Theory 87, 565–580 (2017). https://doi.org/10.1007/s00020-017-2365-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-017-2365-y

Mathematics Subject Classification

Keywords

Navigation