Skip to main content
Log in

Virtual Bound Levels in a Gap of the Essential Spectrum of the Weakly Perturbed Periodic Schrödinger Operator

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

In the space \({L_{2}(\mathbf{R}^{d}) (d \le 3)}\) we consider the Schrödinger operator \({H_{\gamma}=-{\Delta}+ V(\mathbf{x})\cdot+\gamma W(\mathbf{x})\cdot}\), where \({V(\mathbf{x})=V(x_{1}, x_{2}, \dots, x_{d})}\) is a periodic function with respect to all the variables, \({\gamma}\) is a small real coupling constant and the perturbation \({W(\mathbf{x})}\) tends to zero sufficiently fast as \({|\mathbf{x}|\rightarrow\infty}\). We study so called virtual bound levels of the operator \({H_\gamma}\), i.e., those eigenvalues of \({H_\gamma}\) which are born at the moment \({\gamma=0}\) in a gap \({(\lambda_-,\,\lambda_+)}\) of the spectrum of the unperturbed operator \({H_0=-\Delta+ V(\mathbf{x})\cdot}\) from an edge of this gap while \({\gamma}\) increases or decreases. We assume that the dispersion function of H 0, branching from an edge of \({(\lambda_-,\lambda_+)}\), is non-degenerate in the Morse sense at its extremal set. For a definite perturbation \({(W(\mathbf{x})\ge 0)}\) we show that if d ≤ 2, then in the gap there exist virtual eigenvalues which are born from this edge. We investigate their number and an asymptotic behavior of them and of the corresponding eigenfunctions as \({\gamma\rightarrow 0}\). For an indefinite perturbation we estimate the multiplicity of virtual bound levels. In particular, we show that if d = 3 and both edges of the gap \({(\lambda_-,\,\lambda_+)}\) are non-degenerate, then under additional conditions there is a threshold for the birth of the impurity spectrum in the gap, i.e., \({\sigma(H_\gamma)\cap(\lambda_-,\,\lambda_+)=\emptyset}\) for a small enough \({|\gamma|}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arazy J., Zelenko L.: Virtual eigenvalues of the high order Schrödinger operator II. Integr. Equ. Oper. Theory 55(3), 305–345 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arazy J., Zelenko L.: Virtual eigenvalues of the high order Schrödinger operator I. Integr. Equ. Oper. Theory 55(2), 189–231 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arazy J., Zelenko L.: Finite-dimensional perturbations of self-adjoint operators. Integr. Equ. Oper. Theory 34(2), 127–164 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baumgärtel, H.: Analytic Perturbation Theory for Matrices and Operators. Birkhäuser, Basel (1985)

  5. Birman, M.Sh., Solomyak, M.Z.: Estimates for the Number of Negative Eigenvalues of the Schrödinger Operator and its Generalizations. Advances in Soviet Mathematics, vol. 7, pp. 1–55. American Mathematical Society, Providence (1991)

  6. Birman, M.Sh.: Discrete Spectrum in the Gaps of a Continuous One for Perturbations with Large Coupling Constant. Advances in Soviet Mathematics, vol. 7, pp. 57–73. American Mathematical Society, Providence (1991)

  7. Birman, M.Sh.: The spectrum of singular boundary problems. (Russian) Mat. Sb. (M.S.) 55(97), 125–174 (1961) [(English) Am. Math. Soc. Transl. 53, 23–80 (1966)]

  8. Birman M.Sh.: On the number of eigenvalues in a quantum scattering problem. Vest. LSU 16(3), 163–166 (1961)

    MathSciNet  Google Scholar 

  9. Brown, B.M., Eastham, M.S.P., Schmidt K.M.: Periodic Differential Operators. Operator Theory: Advances and Applications, Birkhäuser, Basel (2013)

  10. Deift P.A., Hempel R.: On the existence of eigenvalues of the Schrodinger operator \({H-\lambda W}\) in a gap of \({\sigma(H)}\). Commun. Math. Phys. 103, 461–490 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Filonov, N., Kachkovskiy I.: On the structure of band edges of 2D periodic elliptic operators. arXiv:1510.04367v2 [math-ph]. 9 Feb 2016

  12. Gelfand I.M.: Eigenfunction expansion for a differential equation with periodic coefficients. Sov. Math. Dokl. 73, 1117–1120 (1950)

    Google Scholar 

  13. Gerard Ch.: Resonance theory for periodic Schrödinger operators. Bull. Soc. Math. Fr. 118, 27–54 (1990)

    MathSciNet  MATH  Google Scholar 

  14. Gesztesy F., Simon B.: A short proof of Zheludev’s theorem. Trans. Am. Math. Soc. 335(1), 329–340 (1993)

    MathSciNet  MATH  Google Scholar 

  15. Gesztesy F., Simon B.: On a theorem of Deift and Hempel. Commun. Math. Phys. 116, 503–505 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin/Heidelberg/New York (1977)

  17. Glazman, I.M.: Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators. IPST, Jerusalem (1965)

  18. Gohberg, I., Krein, M.: Introduction to the Theory of Linear Non-Self-Adjoint Operators, vol. 18. American Mathematical Society Translations, Providence (1969) [English translation 1978]

  19. Hainzl Ch., Seiringer R.: Asymptotic behavior of eigenvalues of Schrödinger type operators with degenerate kinetic energy. Math. Nachr. 283(3), 489–499 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hardt R., Simon L.: Nodal sets for solutions of elliptic equations. J. Differ. Geom. 30, 505–522 (1989)

    MathSciNet  MATH  Google Scholar 

  21. Kato, T.: Perturbation Theory of Linear Operators. Springer, New York (1984)

  22. Kha, M., Kuchment, P., Raich, A.: Green’s function asymptotics near the internal edges of spectra of periodic elliptic operators. Spectral gap interior. arXiv:1508.06703v3 [math-ph]. 5 Sept 2015

  23. Kirsch W., Simon B.: Comparison theorems for the gap of Schrödinger operators. J. Funct. Anal. 75, 396–410 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Klaus M.: On the bound state of Schrödinger operators in one dimension. Ann. Phys. 108, 288–300 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  25. Klopp F., Ralston J.: Endpoints of the spectrum of periodic operators are generically simple. Methods Appl. Anal. 7(3), 459–464 (2000)

    MathSciNet  MATH  Google Scholar 

  26. Korotyaev, E.: 1D Schrödinger operator with periodic plus compactly supported potentials. Preprint. arXiv:0904.2871v1 [math.SP]. 18 Apr 2009

  27. Kuchment, P.: An overview of periodic elliptic operators. Bull. Amer. Math. Soc. (N.S.) 53(3), 343–414 (2016)

  28. Kuchment, P.: Floquet Theory for Partial Differential Equations. Birkhäuser, Basel (1993)

  29. Parzygnat A., Lee K.K.Y., Avniel Y., Johnson S.G.: Sufficient conditions for two-dimensional localization by arbitrary weak defects in periodic potentials with band gaps. Phys. Rev. B 81, 155324-1–155324-9 (2010)

    Article  Google Scholar 

  30. Reed M., Simon B.: Methods of Modern Mathematical Physics, IV: Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  31. Rofe-Beketov, F.S.: Spectral analysis of the Hill operator and its perturbations. Funkcional’nui analiz 9, 144–155 (1977) (Russian)

  32. Rofe-Beketov F.S.: A test for the finiteness of the number of discrete levels introduced into gaps of a continuous spectrum by perturbations of a periodic potential. Sov. Math. Dokl. 5, 689–692 (1964)

    MATH  Google Scholar 

  33. Schwinger Y.: On the bound states for a given potential. Proc. Natl. Acad. Sci. USA 47, 122–129 (1961)

    Article  MathSciNet  Google Scholar 

  34. Simon B.: Trace Ideals and Their Applications. Cambridge University Press, London (1979)

    MATH  Google Scholar 

  35. Simon B.: The bound state of weakly coupled Schrödinger operators in one and two dimensions. Ann. Phys. 97, 279–288 (1976)

    Article  MATH  Google Scholar 

  36. Sobolev, A.V.: Weil Asymptotics for the Discrete Spectrum of the Perturbed Hill Operator. Advances in Soviet Mathematics, vol. 7, pp. 159–178. American Mathematical Society, Providence (1991)

  37. Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-Order Differential Equations, vol. II. Oxford University Press, London (1946)

  38. Weidl T.: Remarks on virtual bound states of semi-bounded operators. Commum. Partial Differ. Equ. 24(1–2), 25–60 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wilcox C.H.: Theory of Bloch waves. Journal d’Analize Mathematique 33, 146–167 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zheludev, V.A.: Perturbation of the spectrum of the one-dimensional self-adjoint Schrodinger operator with a periodic potential. In: Birman, M.Sh. (ed.) Topics in Mathematical Physics, vol. 4, pp. 55–75. Consultants Bureau, New York (1971)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Zelenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelenko, L. Virtual Bound Levels in a Gap of the Essential Spectrum of the Weakly Perturbed Periodic Schrödinger Operator. Integr. Equ. Oper. Theory 85, 307–345 (2016). https://doi.org/10.1007/s00020-016-2305-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-016-2305-2

Mathematics Subject Classification

Keywords

Navigation