Skip to main content
Log in

Eigenvalues for Perturbed Periodic Jacobi Matrices by the Wigner-von Neumann Approach

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

The Wigner-von Neumann method, which has previously been used for perturbing continuous Schrödinger operators, is here applied to their discrete counterparts. In particular, we consider perturbations of arbitrary \({T}\)-periodic Jacobi matrices. The asymptotic behaviour of the subordinate solutions is investigated, as too are their initial components, together giving a general technique for embedding eigenvalues, \({\lambda}\), into the operator’s absolutely continuous spectrum. Introducing a new rational function, \({C(\lambda; T)}\), related to the periodic Jacobi matrices, we describe the elements of the a.c. spectrum for which this construction does not work (zeros of \({C(\lambda; T)}\)); in particular showing that there are only finitely many of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio S.: On bound states in the continuum of \({N}\)-body systems and the virial theorem/ Ann. Physics 71(1), 167–276 (1972)

    MathSciNet  Google Scholar 

  2. Behncke H.: Absolute continuity of Hamiltonians with von Neumann Wigner potentials. Proc. Am. Math. Soc. 111(2), 373–384 (1991)

    MathSciNet  MATH  Google Scholar 

  3. Gilbert D.J., Pearson D.B.: On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators. J. Math. Anal. Appl. 128(1), 30–56 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Janas J., Moszynski M.: New discrete Levinson type asymptotics of solutions of linear systems. J. Differ. Equ. Appl. 12(2), 133–163 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kato T.: Perturbation theory for linear operators. Springer Verlag, New York (1966)

    Book  MATH  Google Scholar 

  6. Khan S., Pearson D.B.: Subordinancy and spectral theory for infinite matrices. Helv. Phys. Acta. 65(4), 505–527 (1992)

    MathSciNet  Google Scholar 

  7. Kiselev A., Remling C., Simon B.: Effective perturbation methods for one-dimensional Schrödinger operators. J. Diff. Equ. 151(2), 290–312 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Krüger H.: On the existence of embedded eigenvalues. J. Math. Anal. Appl. 395(2), 776–787 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Krutikov D.: On eigenvalues of discrete Schrödinger operators with potentials of Coulomb-type decay. Lett. Math. Phys. 62(3), 185–192 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kurasov P., Naboko S.: Wigner-von Neumann perturbations of a periodic potential: spectral singularities in bands. Proc. Camb. Philos. Soc. 142(1), 161–183 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lukic, M., Ong, D.C.: Generalized Prüfer variables for perturbations of Jacobi and CMV matrices. arXiv:1409.7116

  12. Lukic M., Ong D.C.: Wigner-von Neumann type perturbations of periodic Schrödinger operators. Trans. Am. Math. Soc. 367(1), 707–724 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Naboko S.: On the dense point spectrum of the Schrödinger and Dirac operators. Teoret. Mat. Fiz. 68, 18–28 (1986)

    MathSciNet  Google Scholar 

  14. Naboko S., Simonov S.: Zeroes of the spectral density of the periodic Schrödinger operator with Wigner-von Neumann potential. Proc. Camb. Philos. Soc. 153(1), 33–58 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Naboko S.N., Yakovlev S.I.: The discrete Schrödinger operator: the point spectrum lying on the continuous spectrum. St. Petersb. Math. J. 4(3), 559–568 (1993)

    MathSciNet  MATH  Google Scholar 

  16. von Neumann J., Wigner E.P.: Über merk würdige diskrete Eigenwerte. Z. Phys. 30, 465–467 (1929)

    MATH  Google Scholar 

  17. Ostrowski A.: Solution of equations in Euclidean and Banach spaces. Academic Press, New York (1973)

    MATH  Google Scholar 

  18. Reed M., Simon B.: Methods of modern mathematical physics, IV: analysis of operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  19. Simon, B.: Orthogonal polynomials on the unit circle, part 1: classical theory. American Mathematical Society, Providence (2005)

  20. Simon, B.: Some Jacobi matrices with decaying potential and dense point spectrum. Commun. Math. Phys. 87, 253–258 (1982/1983)

  21. Simon B.: Some Schrödinger operators with dense point spectrum. Proc. Am. Math. Soc. 125(1), 203–208 (1997)

    Article  MATH  Google Scholar 

  22. Zygmund, A.: Trigonometric series, vol 1. Cambridge University Press, New York (1959)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Wood.

Additional information

Edmund Judge was supported by the Engineering and Physical Sciences Research Council (Grant EP/M506540/1). Sergey Naboko was supported by the Russian Science Foundation (Grant 15-11-30007), NCN 2013/09/BST1/04319 and Marie Curie Grant (2013-2014 yy) PIIF-GA-2011-299919.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Judge, E., Naboko, S. & Wood, I. Eigenvalues for Perturbed Periodic Jacobi Matrices by the Wigner-von Neumann Approach. Integr. Equ. Oper. Theory 85, 427–450 (2016). https://doi.org/10.1007/s00020-016-2302-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-016-2302-5

Keywords

Navigation