Skip to main content
Log in

Time–Frequency Localization Operators and a Berezin Transform

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Time–frequency localization operators are a quantization procedure that maps symbols on \({\mathbb{R}^{2d}}\) to operators and depends on two window functions. We study the range of this quantization and its dependence on the window functions. If the If the short-time Fourier transform of the windows does not have any zero, then the range is dense in the Schatten p-classes. The main tool is new version of the Berezin transform associated to operators on \({L^{2}(\mathbb{R}^{d})}\). Although some results are analogous to results about Toeplitz operators on spaces of holomorphic functions, the absence of a complex structure requires the development of new methods that are based on time-frequency analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berezin F.: Wick and Anti-Wick symbols of operators. Mat. Sb. (N.S.) 86(128), 578–610 (1971)

    MathSciNet  Google Scholar 

  2. Berger C.A., Coburn L.A.: Toeplitz operators on the Segal–Bargmann space. Trans. Am. Math. Soc. 301(2), 813–829 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berger C.A., Coburn L.A.: Heat flow and Berezin–Toeplitz estimates. Am. J. Math. 116(3), 563–590 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boggiatto P., Cordero E., Gröchenig K.: Generalized Anti-Wick Operators with symbols in distributional Sobolev spaces. Integral Equ. Oper. Theory 48(4), 427–442 (2004)

    Article  MATH  Google Scholar 

  5. Boggiatto P., Toft J.: Embeddings and compactness for generalized Sobolev–Shubin spaces and modulation spaces. Appl. Anal. 84(3), 269–282 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Conway J.B.: A Course in Functional Analysis, 2nd edn. Springer, New York (1990)

    Google Scholar 

  7. Cordero E., Gröchenig K.: Time–frequency analysis of localization operators. J. Funct. Anal. 205(1), 107–131 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cordero E., Gröchenig K.: Necessary conditions for Schatten class localization operators. Proc. Am. Math. Soc. 133(12), 3573–3579 (2005)

    Article  MATH  Google Scholar 

  9. Cordero E., Gröchenig K.: Symbolic calculus and Fredholm property for localization operators. J. Fourier Anal. Appl. 12(3), 371–392 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cordoba A., Fefferman C.: Wave packets and Fourier integral operators. Commun. Partial Differ. Equ. 3(11), 979–1005 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Daubechies I.: Time–frequency localization operators: a geometric phase space approach. IEEE Trans. Inf. Theory 34(4), 605–612 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dörfler M., Torrésani B.: Representation of operators in the time–frequency domain and generalized Gabor multipliers. J. Fourier Anal. Appl. 16(2), 261–293 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Engliš M.: Density of algebras generated by Toeplitz operator on Bergman spaces. Ark. Mat. 30(2), 227–243 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Engliš M.: Berezin quantization and reproducing kernels on complex domains. Trans. Am. Math. Soc. 348(2), 411–479 (1996)

  15. Engliš M.: Berezin and Berezin–Toeplitz quantizations for general function spaces. Rev. Mat. Complut. 19(2), 385–430 (2006)

  16. Feichtinger H.: Zur Idealtheorie von Segal-Algebren. Manuscr. Math. 10, 307–310 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  17. Feichtinger H., Gröchenig K.: Gabor frames and time–frequency analysis of distributions. J. Funct. Anal. 146(2), 464–495 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Feichtinger, H.G., Nowak, K.: A first survey of Gabor multipliers. In: Advances in Gabor Analysis, Appl. Numer. Harmon. Anal., pp. 99–128. Birkhäuser, Boston (2003)

  19. Feichtinger H., Strohmer, T. (eds.): Gabor Analysis and Algorithms: Theory and Applications. Appl. and Num. Harm. Anal. Birkhäuser, Boston (1998)

  20. Fernández C., Galbis A.: Compactness of time–frequency localization operators on \({L^{2}(\mathbb{R}^{d})}\). J. Funct. Anal. 233(2), 335–350 (2006)

  21. Folland G.: Harmonic Analysis in Phase Space. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  22. Gröchenig K.: Foundations of Time–Frequency Analysis. Appl. Numer. Harmon. Anal. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  23. Gröchenig, K., Strohmer, T.: Numerical and theoretical aspects of nonuniform sampling of band-limited images. In: Nonuniform Sampling, Information Technology: Transmission, Processing, and Storage, pp. 283–324. Kluwer/Plenum, New York (2001)

  24. Gröchenig K., Toft J.: Isomorphism properties of Toeplitz operators and pseudo-differential operators between modulation spaces. J. Anal. Math. 114, 255–283 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Katznelson Y.: An Introduction to Harmonic Analysis. Wiley, New York (1968)

    MATH  Google Scholar 

  26. Lerner N.: The Wick calculus of pseudo-differential operators and some of its applications. Cubo Mat. Educ. 5(1), 213–236 (2003)

    MATH  MathSciNet  Google Scholar 

  27. Lev N., Olevskii A.: Wiener’s ‘closure of translates’ problem and Piatetski–Shapiro’s uniqueness phenomenon. Ann. Math. (2) 174(1), 519–541 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pool. J.: Mathematical aspects of the Weyl correspondence. J. Math. Phys. 7, 66–76 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ramanathan J., Topiwala P.: Time–frequency localization via the Weyl correspondence. SIAM J. Math. Anal. 24(5), 1378–1393 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  30. Reiter, H.: L 1-algebras and Segal algebras. In: Lecture Notes in Mathematics, vol. 231. Springer, Berlin (1971)

  31. Reiter, H., Stegeman, J.: Classical harmonic analysis and locally compact groups. In: London Mathematical Society Monographs, vol. 22, 2nd edn. Clarendon Press, Oxford (2000)

  32. Shubin M.: Pseudodifferential Operators and Spectral Theory, 2nd edn. Springer, Berlin (2001)

    Book  Google Scholar 

  33. Simon B.: The classical limit of quantum partition functions. Commun. Math. Phys. 71(3), 247–276 (1980)

    Article  MATH  Google Scholar 

  34. Toft J.: Continuity properties for modulation spaces, with applications to pseudo-differential calculus. I. J. Funct. Anal. 207(2), 399–429 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Toft J., Boggiatto P.: Schatten classes for Toeplitz operators with Hilbert space windows on modulation spaces. Adv. Math. 217(1), 305–333 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wong, M.W.: Wavelets transforms and localization operators. In: Operator Theory Advances and Applications, vol. 136. Birkhauser, Boston (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karlheinz Gröchenig.

Additional information

K. G. was supported in part by the Project P26273-N25 of the Austrian Science Fund (FWF).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayer, D., Gröchenig, K. Time–Frequency Localization Operators and a Berezin Transform. Integr. Equ. Oper. Theory 82, 95–117 (2015). https://doi.org/10.1007/s00020-014-2208-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-014-2208-z

Mathematics Subject Classification

Keywords

Navigation