Skip to main content
Log in

Superoxide dismutase 1 is positively selected to minimize protein aggregation in great apes

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Positive (adaptive) selection has recently been implied in human superoxide dismutase 1 (SOD1), a highly abundant antioxidant protein with energy signaling and antiaging functions, one of very few examples of direct selection on a human protein product (exon); the molecular drivers of this selection are unknown. We mapped 30 extant SOD1 sequences to the recently established mammalian species tree and inferred ancestors, key substitutions, and signatures of selection during the protein’s evolution. We detected elevated substitution rates leading to great apes (Hominidae) at ~1 per 2 million years, significantly higher than in other primates and rodents, although these paradoxically generally evolve much faster. The high evolutionary rate was partly due to relaxation of some selection pressures and partly to distinct positive selection of SOD1 in great apes. We then show that higher stability and net charge and changes at the dimer interface were selectively introduced upon separation from old world monkeys and lesser apes (gibbons). Consequently, human, chimpanzee and gorilla SOD1s have a net charge of −6 at physiological pH, whereas the closely related gibbons and macaques have −3. These features consistently point towards selection against the malicious aggregation effects of elevated SOD1 levels in long-living great apes. The findings mirror the impact of human SOD1 mutations that reduce net charge and/or stability and cause ALS, a motor neuron disease characterized by oxidative stress and SOD1 aggregates and triggered by aging. Our study thus marks an example of direct selection for a particular chemical phenotype (high net charge and stability) in a single human protein with possible implications for the evolution of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Presgraves DC (2010) The molecular evolutionary basis of species formation. Nat Rev Genet 11:175–180. doi:10.1038/nrg2718

    Article  CAS  PubMed  Google Scholar 

  2. Hurst LD (2009) Fundamental concepts in genetics: genetics and the understanding of selection. Nat Rev Genet 10:83–93. doi:10.1038/nrg2506

    Article  CAS  PubMed  Google Scholar 

  3. Gillespie JH (1991) The Causes of Molecular Evolution. Oxford Ser Ecol Evol. doi:0195092716

  4. King MC, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188:107–116

    Article  CAS  PubMed  Google Scholar 

  5. Rogers J, Gibbs RA (2014) Comparative primate genomics: emerging patterns of genome content and dynamics. Nat Rev Genet 15:347–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wolfe KH, Li W-H (2003) Molecular evolution meets the genomics revolution. Nat Genet 33(Suppl):255–265. doi:10.1038/ng1088

    Article  CAS  PubMed  Google Scholar 

  7. Enard W, Pääbo S (2004) Comparative primate genomics. Annu Rev Genomics Hum Genet 5:351–378

    Article  CAS  PubMed  Google Scholar 

  8. Goodman M, Grossman LI, Wildman DE (2005) Moving primate genomics beyond the chimpanzee genome. Trends Genet 21:511–517

    Article  CAS  PubMed  Google Scholar 

  9. Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jolly CJ (2001) A proper study for mankind: analogies from the Papionin monkeys and their implications for human evolution. Am J Phys Anthropol 116:177–204. doi:10.1002/ajpa.10021

    Article  Google Scholar 

  11. Locke DP, Hillier LW, Warren WC et al (2011) Comparative and demographic analysis of orang-utan genomes. Nature 469:529–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boffelli D, McAuliffe J, Ovcharenko D et al (2003) Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science 299:1391–1394. doi:10.1126/science.1081331

    Article  CAS  PubMed  Google Scholar 

  13. Blekhman R, Oshlack A, Chabot AE et al (2008) Gene regulation in primates evolves under tissue-specific selection pressures. PLoS Genet 4:e1000271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Perry GH, Melsted P, Marioni JC et al (2012) Comparative RNA sequencing reveals substantial genetic variation in endangered primates. Genome Res 22:602–610. doi:10.1101/gr.130468.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nielsen R, Hellmann I, Hubisz M et al (2007) Recent and ongoing selection in the human genome. Nat Rev Genet 8:857–868. doi:10.1038/nrg2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sabeti PC, Schaffner SF, Fry B et al (2006) Positive natural selection in the human lineage. Science 312:1614–1620. doi:10.1126/science.1124309

    Article  CAS  PubMed  Google Scholar 

  17. O’Bleness M, Searles VB, Varki A et al (2012) Evolution of genetic and genomic features unique to the human lineage. Nat Rev Genet 13:853–866. doi:10.1038/nrg3336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Pardo CA, Xu Z, Borchelt DR et al (1995) Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons. Proc Natl Acad Sci USA 92:954–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Perry J, Shin D, Getzoff E, Tainer J (2010) The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta 1804:245–262. doi:10.1016/j.bbapap.2009.11.004

    Article  CAS  PubMed  Google Scholar 

  20. Reddi AR, Culotta VC (2013) SOD1 integrates signals from oxygen and glucose to repress respiration. Cell 152:224–235. doi:10.1016/j.cell.2012.11.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Getzoff ED, Tainer JA, Stempien MM et al (1989) Evolution of CuZn superoxide dismutase and the Greek key β-barrel structural motif. Proteins Struct Funct Bioinforma 5:322–336

    Article  CAS  Google Scholar 

  22. Landis GN, Tower J (2005) Superoxide dismutase evolution and life span regulation. Mech Ageing Dev 126:365–379. doi:10.1016/j.mad.2004.08.012

    Article  CAS  PubMed  Google Scholar 

  23. Sun J, Tower J (1999) FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol 19:216–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Melov S, Ravenscroft J, Malik S et al (2000) Extension of life-span with superoxide dismutase/catalase mimetics. Science 289:1567–1569. doi:10.1126/science.289.5484.1567

    Article  CAS  PubMed  Google Scholar 

  25. Gonzalez de Aguilar J-L, Echaniz-Laguna A, Fergani A et al (2007) Amyotrophic lateral sclerosis: all roads lead to Rome. J Neurochem 101:1153–1160. doi:10.1111/j.1471-4159.2006.04408.x

    Article  CAS  PubMed  Google Scholar 

  26. Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62. doi:10.1038/362059a0

    Article  CAS  PubMed  Google Scholar 

  27. Renton AE, Chiò A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17:17–23. doi:10.1038/nn.3584

    Article  CAS  PubMed  Google Scholar 

  28. Nordlund A, Oliveberg M (2006) Folding of Cu/Zn superoxide dismutase suggests structural hotspots for gain of neurotoxic function in ALS: parallels to precursors in amyloid disease. Proc Natl Acad Sci 103:10218–10223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Byström R, Andersen PM, Gröbner G, Oliveberg M (2010) SOD1 mutations targeting surface hydrogen bonds promote amyotrophic lateral sclerosis without reducing apo-state stability. J Biol Chem 285:19544–19552. doi:10.1074/jbc.M109.086074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Shi P, Gal J, Kwinter DM et al (2010) Mitochondrial dysfunction in amyotrophic lateral sclerosis. Biochim Biophys Acta 1802:45–51. doi:10.1016/j.bbadis.2009.08.012

    Article  CAS  PubMed  Google Scholar 

  31. Huang P, Feng L, Oldham EA et al (2000) Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407:390–395

    Article  CAS  PubMed  Google Scholar 

  32. Lu T, Pan Y, Kao S-Y et al (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891. doi:10.1038/nature02661

    Article  CAS  PubMed  Google Scholar 

  33. Martin GM, Austad SN, Johnson TE (1996) Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat Genet 13:25–34

    Article  CAS  PubMed  Google Scholar 

  34. Carrì M, Cozzolino M (2011) SOD1 and mitochondria in ALS: a dangerous liaison. J Bioenerg Biomembr 43:593–599. doi:10.1007/s10863-011-9394-z

    Article  PubMed  CAS  Google Scholar 

  35. Kepp KP (2015) Genotype-property patient-phenotype relations suggest that proteome exhaustion can cause amyotrophic lateral sclerosis. PLoS One 10:e0118649. doi:10.1371/journal.pone.0118649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lee YM, Friedman DJ, Ayala FJ (1985) Superoxide dismutase: an evolutionary puzzle. Proc Natl Acad Sci 82:824–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fukuhara R, Tezuka T, Kageyama T (2002) Structure, molecular evolution, and gene expression of primate superoxide dismutases. Gene 296:99–109

    Article  CAS  PubMed  Google Scholar 

  38. Hancock AM, Witonsky DB, Gordon AS et al (2008) Adaptations to climate in candidate genes for common metabolic disorders. PLoS Genet 4:e32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Meredith RW, Janečka JE, Gatesy J et al (2011) Impacts of the cretaceous terrestrial revolution and kpg extinction on mammal diversification. Science 334:521–524

    Article  CAS  PubMed  Google Scholar 

  40. Shaw BF, Moustakas DT, Whitelegge JP, Faull KF (2010) Taking charge of proteins: from neurodegeneration to industrial biotechnology. In: Biology AMBT-A in PC and S (ed) Adv. Protein Chem. Struct. Biol. Academic Press, New York, pp 127–164

    Google Scholar 

  41. Strange RW, Antonyuk SV, Hough MA et al (2006) Variable metallation of human superoxide dismutase: atomic resolution crystal structures of Cu–Zn, Zn–Zn and as-isolated wild-type enzymes. J Mol Biol 356:1152–1162. doi:10.1016/j.jmb.2005.11.081

    Article  CAS  PubMed  Google Scholar 

  42. Consortium TU (2008) The Universal Protein Resource (UniProt). Nucleic Acids Res 36:D190–D195. doi:10.1093/nar/gkm895

    Article  CAS  Google Scholar 

  43. Dasmeh P, Serohijos AWR, Kepp KP, Shakhnovich EI (2013) Positively selected sites in cetacean myoglobins contribute to protein stability. PLoS Comput Biol 9:e1002929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Holm J, Dasmeh P, Kepp KP (2016) Tracking evolution of myoglobin stability in cetaceans using experimentally calibrated computational methods that account for generic protein relaxation. Biochim Biophys Acta Proteins Proteom 1864:825–834. doi:10.1016/j.bbapap.2016.04.004

    Article  CAS  Google Scholar 

  45. Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  47. Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. doi:10.1093/oxfordjournals.molbev.a003851

    PubMed  Google Scholar 

  48. Yang Z (1996) Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol Evol 11:367–372

    Article  CAS  PubMed  Google Scholar 

  49. Williams PD, Pollock DD, Blackburne BP, Goldstein RA (2006) Assessing the accuracy of ancestral protein reconstruction methods. PLoS Comput Biol 2:e69. doi:10.1371/journal.pcbi.0020069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Yang Z, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19:908–917

    Article  CAS  PubMed  Google Scholar 

  51. Neyman J, Pearson ES (1933) On the problem of the most efficient tests of statistical hypotheses. Philos Trans R Soc Lond A 231:289–337

    Article  Google Scholar 

  52. Yang ZH, Nielsen R, Goldman N, Pedersen AMK (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591. doi:10.1093/molbev/msm088

    Article  CAS  PubMed  Google Scholar 

  54. Pond SLK, Frost SDW (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533

    Article  CAS  PubMed  Google Scholar 

  55. Murrell B, Wertheim JO, Moola S et al (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8:e1002764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Murrell B, Moola S, Mabona A et al (2013) FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol:mst030

  57. Wertheim JO, Murrell B, Smith MD et al (2014) RELAX: detecting relaxed selection in a phylogenetic framework. Mol Biol Evol 32:1–13. doi:10.1093/molbev/msu400

    Google Scholar 

  58. Vassall KA, Stubbs HR, Primmer HA et al (2011) Decreased stability and increased formation of soluble aggregates by immature superoxide dismutase do not account for disease severity in ALS. Proc Natl Acad Sci USA 108:2210–2215. doi:10.1073/pnas.0913021108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Furukawa Y, O’Halloran TV (2005) Amyotrophic lateral sclerosis mutations have the greatest destabilizing effect on the apo- and reduced form of SOD1, leading to unfolding and oxidative aggregation. J Biol Chem 280:17266–17274. doi:10.1074/jbc.M500482200

    Article  CAS  PubMed  Google Scholar 

  60. Lindberg MJ, Byström R, Boknäs N et al (2005) Systematically perturbed folding patterns of amyotrophic lateral sclerosis (ALS)-associated SOD1 mutants. Proc Natl Acad Sci USA 102:9754–9759. doi:10.1073/pnas.0501957102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang Q, Johnson JL, Agar NYR, Agar JN (2008) Protein aggregation and protein instability govern familial amyotrophic lateral sclerosis patient survival. PLoS Biol 6:e170. doi:10.1371/journal.pbio.0060170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33:W306–W310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dehouck Y, Kwasigroch JM, Gilis D, Rooman M (2011) PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality. BMC Bioinform 12:151. doi:10.1186/1471-2105-12-151

    Article  Google Scholar 

  64. Kepp KP (2014) Computing stability effects of mutations in human superoxide dismutase 1. J Phys Chem B 118:1799–1812

    Article  CAS  PubMed  Google Scholar 

  65. Christensen NJ, Kepp KP (2012) Accurate stabilities of laccase mutants predicted with a modified FoldX protocol. J Chem Inf Model 52:3028–3042. doi:10.1021/ci300398z

    Article  CAS  PubMed  Google Scholar 

  66. Kepp KP (2015) Towards a “Golden Standard” for computing globin stability: stability and structure sensitivity of myoglobin mutants. Biochim Biophys Acta Proteins Proteom 1854:1239–1248. doi:10.1016/j.bbapap.2015.06.002

    Article  CAS  Google Scholar 

  67. Capriotti E, Fariselli P, Casadio R (2004) A neural-network-based method for predicting protein stability changes upon single point mutations. Bioinformatics 20(suppl 1):i63–i68. doi:10.1093/bioinformatics/bth928

    Article  CAS  PubMed  Google Scholar 

  68. Thiltgen G, Goldstein RA (2012) Assessing predictors of changes in protein stability upon mutation using self-consistency. PLoS One 7:e46084. doi:10.1371/journal.pone.0046084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tokuriki N, Stricher F, Schymkowitz J et al (2007) The stability effects of protein mutations appear to be universally distributed. J Mol Biol. doi:10.1016/j.jmb.2007.03.069

    PubMed  Google Scholar 

  70. Shi Y, Mowery RA, Shaw BF (2013) Effect of metal loading and subcellular pH on net charge of superoxide dismutase-1. J Mol Biol 425:4388–4404. doi:10.1016/j.jmb.2013.07.018

    Article  CAS  PubMed  Google Scholar 

  71. Gao J, Mammen M, Whitesides GM (1996) Evaluating electrostatic contributions to binding with the use of protein charge ladders. Science 272:535

    Article  CAS  PubMed  Google Scholar 

  72. Shi Y, Abdolvahabi A, Shaw BF (2014) Protein charge ladders reveal that the net charge of ALS-linked superoxide dismutase can be different in sign and magnitude from predicted values. Protein Sci 23:1417–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shaw BF, Valentine JS (2007) How do ALS-associated mutations in superoxide dismutase 1 promote aggregation of the protein? Trends Biochem Sci 32:78–85. doi:10.1016/j.tibs.2006.12.005

    Article  CAS  PubMed  Google Scholar 

  74. Danielsson J, Mu X, Lang L et al (2015) Thermodynamics of protein destabilization in live cells. Proc Natl Acad Sci USA 112:12402–12407. doi:10.1073/pnas.1511308112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mailund T, Halager AE, Westergaard M et al (2012) A new isolation with migration model along complete genomes infers very different divergence processes among closely related great ape species. PLoS Genet 8:e1003125. doi:10.1371/journal.pgen.1003125

    Article  PubMed  PubMed Central  Google Scholar 

  76. Li WH, Ellsworth DL, Krushkal J et al (1996) Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol Phylogenet Evol 5:182–187. doi:10.1006/mpev.1996.0012

    Article  CAS  PubMed  Google Scholar 

  77. Britten RJ (1986) Rates of DNA sequence evolution differ between taxonomic groups. Science 231:1393–1398

    Article  CAS  PubMed  Google Scholar 

  78. Seino S, Bell GI, Li WH (1992) Sequences of primate insulin genes support the hypothesis of a slower rate of molecular evolution in humans and apes than in monkeys. Mol Biol Evol 9:193–203

    CAS  PubMed  Google Scholar 

  79. Yi S, Ellsworth DL, Li W-H (2002) Slow molecular clocks in Old World monkeys, apes, and humans. Mol Biol Evol 19:2191–2198

    Article  CAS  PubMed  Google Scholar 

  80. Weinreich DM (2001) The rates of molecular evolution in rodent and primate mitochondrial DNA. J Mol Evol 52:40–50

    Article  CAS  PubMed  Google Scholar 

  81. Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tolmasoff JM, Ono T, Cutler RG (1980) Superoxide dismutase: correlation with life-span and specific metabolic rate in primate species. Proc Natl Acad Sci 77:2777–2781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Anisimova M, Yang Z (2007) Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites. Mol Biol Evol 24:1219–1228

    Article  CAS  PubMed  Google Scholar 

  84. Ding F, Dokholyan NV (2008) Dynamical roles of metal ions and the disulfide bond in Cu, Zn superoxide dismutase folding and aggregation. Proc Natl Acad Sci USA 105:19696–19701. doi:10.1073/pnas.0803266105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Khan S, Vihinen M (2010) Performance of protein stability predictors. Hum Mutat 31:675–684. doi:10.1002/humu.21242

    Article  CAS  PubMed  Google Scholar 

  86. Scott EE, Paster EV, Olson JS (2000) The stabilities of mammalian apomyoglobins vary over a 600-fold range and can be enhanced by comparative mutagenesis. J Biol Chem 275:27129–27136. doi:10.1074/jbc.M000452200

    CAS  PubMed  Google Scholar 

  87. Hendgen-Cotta UB, Merx MW, Shiva S et al (2008) Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci USA 105:10256–10261. doi:10.1073/pnas.0801336105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Davis RW, Polasek L, Watson R et al (2004) The diving paradox: new insights into the role of the dive response in air-breathing vertebrates. Comp Biochem Physiol Part A Mol Integr Physiol 138:263–268. doi:10.1016/j.cbpb.2004.05.003

    Article  CAS  Google Scholar 

  89. Dasmeh P, Davis RW, Kepp KP (2013) Aerobic dive limits of seals with mutant myoglobin using combined thermochemical and physiological data. Comp Biochem Physiol Part A Mol Integr Physiol 164:119–128. doi:10.1016/j.cbpa.2012.10.010

    Article  CAS  Google Scholar 

  90. Mirceta S, Signore AV, Burns JM et al (2013) Evolution of mammalian diving capacity traced by myoglobin net surface charge. Science 340:1234192. doi:10.1126/science.1234192

    Article  PubMed  CAS  Google Scholar 

  91. Kimura M (1962) On the probability of fixation of mutant genes in a population. Genetics 47:713

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Phifer-Rixey M, Bonhomme F, Boursot P et al (2012) Adaptive evolution and effective population size in wild house mice. Mol Biol Evol 29:2949–2955. doi:10.1093/molbev/mss105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Piganeau G, Eyre-Walker A (2009) Evidence for variation in the effective population size of animal mitochondrial DNA. PLoS One 4:e4396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Demetrius L (2006) Aging in mouse and human systems: a comparative study. Ann N Y Acad Sci 1067:66–82. doi:10.1196/annals.1354.010

    Article  CAS  PubMed  Google Scholar 

  95. Perez SI, Tejedor MF, Novo NM, Aristide L (2013) Divergence times and the evolutionary radiation of new world monkeys (Platyrrhini, Primates): an analysis of fossil and molecular data. PLoS One 8:e68029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. White CR, Seymour RS (2003) Mammalian basal metabolic rate is proportional to body mass2/3. Proc Natl Acad Sci 100:4046–4049. doi:10.1073/pnas.0436428100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Marquet PA (2002) Of predators, prey, and power laws. Science 295:2229–2230

    Article  CAS  PubMed  Google Scholar 

  98. Kumar S, Subramanian S (2002) Mutation rates in mammalian genomes. Proc Natl Acad Sci 99:803–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Drummond DA, Wilke CO (2008) Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134:341–352. doi:10.1016/j.cell.2008.05.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kepp KP, Dasmeh P (2014) A model of proteostatic energy cost and its use in analysis of proteome trends and sequence evolution. PLoS One 9:e90504. doi:10.1371/journal.pone.0090504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Serohijos AWR, Rimas Z, Shakhnovich EI (2012) Protein biophysics explains why highly abundant proteins evolve slowly. Cell Rep 2:249–256. doi:10.1016/j.celrep.2012.06.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lanfear R, Kokko H, Eyre-Walker A (2014) Population size and the rate of evolution. Trends Ecol Evol 29:33–41. doi:10.1016/j.tree.2013.09.009

    Article  PubMed  Google Scholar 

  104. Haldane JBS (1927) A mathematical theory of natural and artificial selection, part V: selection and mutation. Math Proc Cambridge Philos Soc 23:838–844

    Article  Google Scholar 

  105. Prudencio M, Hart PJ, Borchelt DR, Andersen PM (2009) Variation in aggregation propensities among ALS-associated variants of SOD1: correlation to human disease. Hum Mol Genet 18:3217–3226. doi:10.1093/hmg/ddp260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890. doi:10.1038/nature02261

    Article  CAS  PubMed  Google Scholar 

  107. Münch C, Bertolotti A (2010) Exposure of hydrophobic surfaces initiates aggregation of diverse ALS-causing superoxide dismutase-1 mutants. J Mol Biol 399:512–525. doi:10.1016/j.jmb.2010.04.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Gagliardi S, Cova E, Davin A et al (2010) SOD1 mRNA expression in sporadic amyotrophic lateral sclerosis. Neurobiol Dis 39:198–203. doi:10.1016/j.nbd.2010.04.008

    Article  CAS  PubMed  Google Scholar 

  109. Kitamura A, Inada N, Kubota H et al (2014) Dysregulation of the proteasome increases the toxicity of ALS-linked mutant SOD1. Genes Cells 19:209–224. doi:10.1111/gtc.12125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Allen SP, Rajan S, Duffy L et al (2014) Superoxide dismutase 1 mutation in a cellular model of amyotrophic lateral sclerosis shifts energy generation from oxidative phosphorylation to glycolysis. Neurobiol Aging 35:1499–1509. doi:10.1016/j.neurobiolaging.2013.11.025

    Article  CAS  PubMed  Google Scholar 

  111. Richardson K, Allen SP, Mortiboys H et al (2013) The effect of SOD1 mutation on cellular bioenergetic profile and viability in response to oxidative stress and influence of mutation-type. PLoS One 8:e68256. doi:10.1371/journal.pone.0068256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bouteloup C, Desport J-C, Clavelou P et al (2009) Hypermetabolism in ALS patients: an early and persistent phenomenon. J Neurol 256:1236–1242. doi:10.1007/s00415-009-5100-z

    Article  CAS  PubMed  Google Scholar 

  113. Wagner A (2005) Energy constraints on the evolution of gene expression. Mol Biol Evol 22:1365–1374. doi:10.1093/molbev/msi126

    Article  CAS  PubMed  Google Scholar 

  114. Heizer EM, Raiford DW, Raymer ML et al (2006) Amino acid cost and codon-usage biases in 6 prokaryotic genomes: a whole-genome analysis. Mol Biol Evol 23:1670–1680. doi:10.1093/molbev/msl029

    Article  CAS  PubMed  Google Scholar 

  115. Drummond DA, Bloom JD, Adami C et al (2005) Why highly expressed proteins evolve slowly. Proc Natl Acad Sci USA 102:14338–14343. doi:10.1073/pnas.0504070102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kirkwood TB, Rose MR (1991) Evolution of senescence: late survival sacrificed for reproduction. Philos Trans R Soc Lond B Biol Sci 332:15–24. doi:10.1098/rstb.1991.0028

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasper P. Kepp.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2017_2519_MOESM1_ESM.pdf

Supplementary information: The supporting information file contains the alignment of SOD1 sequences used in this work (Figures S1 and S2); the tree used for rate relaxation analysis as made from DataMonkey (Figure S3); codons detected to be under positive selection using various models (Table S1); branches detected to be under positive selection (Table S2); numerical data from relaxation analysis (Table S3); correlation of benchmarked experimental stability data vs. computed stability changes of SOD1 mutants (Figure S4); numerical data used for this correlation (Table S4); distribution of stability effects for all possible mutations in SOD1 as estimated using Popmusic (Figure S5); all inferred substitutions in the phylogeny from ancestral state reconstruction and computed ∆∆G values and solvent exposure for all sites (Table S5) (PDF 3065 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasmeh, P., Kepp, K.P. Superoxide dismutase 1 is positively selected to minimize protein aggregation in great apes. Cell. Mol. Life Sci. 74, 3023–3037 (2017). https://doi.org/10.1007/s00018-017-2519-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2519-8

Keywords

Navigation