Skip to main content

Advertisement

Log in

On glioblastoma and the search for a cure: where do we stand?

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Although brain tumours have been documented and recorded since the nineteenth century, 2016 marked 90 years since Percival Bailey and Harvey Cushing coined the term “glioblastoma multiforme”. Since that time, although extensive developments in diagnosis and treatment have been made, relatively little improvement on prognosis has been achieved. The resilience of GBM thus makes treating this tumour one of the biggest challenges currently faced by neuro-oncology. Aggressive and robust development, coupled with difficulties of complete resection, drug delivery and therapeutic resistance to treatment are some of the main issues that this nemesis presents today. Current treatments are far from satisfactory with poor prognosis, and focus on palliative management rather than curative intervention. However, therapeutic research leading to developments in novel treatment stratagems show promise in combating this disease. Here we present a review on GBM, looking at the history and advances which have shaped neurosurgery over the last century that cumulate to the present day management of GBM, while also exploring future perspectives in treatment options that could lead to new treatments on the road to a cure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Adapted from Ref. [30]

Fig. 2

Similar content being viewed by others

Abbreviations

BBB:

Blood brain barrier

BCNU:

Carmustine

CCNU:

Lomustine

CED:

Convection enhanced delivery

CNS:

Central nervous system

CSCs:

Cancer Stem Cells

DNA:

Deoxyribonucleic acid

EGFR:

Epidermal Growth Factor Receptor

FDA:

US Food and Drug Administration

GBM:

Glioblastoma

MGMT:

O 6-methylguanine-DNA-methyltransferase

MRI:

Magnetic resonance imaging

PARP:

Poly ADP ribose polymerase

PARPis:

Poly ADP ribose polymerase inhibitors

p53:

Tumour suppressor protein 53

RT:

Radiotherapy

siRNA:

Small interfering Ribonucleic Acid

TMZ:

Temozolomide

References

  1. Jones E (1999) Colgi, Cajal and the neuron doctrine. J Hist Neurosci 8(2):170–178

    Article  CAS  PubMed  Google Scholar 

  2. Bock O (2013) Cajal, Golgi, Nansen, Schäfer and the neuron doctrine. Endeavour 37(4):228–234

    Article  PubMed  Google Scholar 

  3. DeAngelis L, Mellinghoff I (2011) Virchow 2011 or how to ID(H) human glioblastoma. J Clin Oncol 29(34):4473–4474

    Article  CAS  PubMed  Google Scholar 

  4. Scherer H (1940) A critical review: the pathology of cerebral gliomas. J Neurol. Psychiatry 3(2):147–177

    CAS  Google Scholar 

  5. Baker Fn (1993) The Massachusetts General Hospital. Early history and neurosurgery to 1939. J Neurosurg 79(6):948–959

    Article  Google Scholar 

  6. Lister J (1867) On the antiseptic principle in the practice of surgery. The British Medical Journal 2:246–248

    Article  CAS  PubMed  Google Scholar 

  7. Kerr P, Caputy A, Horwitz N (2005) A history of cerebral localization. Neurosurg Focus 18 (4):e1

    Article  PubMed  Google Scholar 

  8. Greenblatt S (1997) The crucial decade: modern neurosurgery’s definitive development in Harvey Cushing’s early research and practice, 1900 to 1910. J Neurosurg 87(6):964–971

    Article  CAS  PubMed  Google Scholar 

  9. Macewen W (1881) Intra-cranial lesions: illustrating some points in connexion with the localisation of cerebral affections and the advantages of antiseptic trephining. Lancet 118(3031):581–583

    Article  Google Scholar 

  10. Greenblatt S (2007) A surgeon for the brain. Brain 130(1):303–306

    Article  Google Scholar 

  11. Macewen W (1879) Tumour of the dura mater; convulsions; removal of tumour by trephining; recovery. Glasgow Med J 12:208–213

    Google Scholar 

  12. Bennet A, Godlee R (1885) Case of a cerebral tumour. Med Chir Trans 68:243–275

    Article  Google Scholar 

  13. Kirkpatrick D (1984) The first primary brain-tumor operation. J Neurosurg 61(5):809–813

    Article  CAS  PubMed  Google Scholar 

  14. Greenblatt S (2003) Harvey Cushing’s paradigmatic contribution to neurosurgery and the evolution of his thoughts about specialization. Bull Hist Med 77(4):789–822

    Article  PubMed  Google Scholar 

  15. Horsley V (1887) Remarks on ten consecutive cases of operations upon the brain and cranial cavity to illustrate the details and safety of the method employed. Br Med J 1(1373):863–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Horsley V (1886) Brain surgery. Br Med J 2(1345):670–675

    Article  Google Scholar 

  17. Tan T, Black P (2002) Sir Victor Horsley (1857–1916): pioneer of neurological surgery. Neurosurgery 50(3):607–611

    PubMed  Google Scholar 

  18. Toledo-Pereyra L (2009) X-rays surgical revolution. J Invest Surg 22(5):327–332

    Article  PubMed  Google Scholar 

  19. Voorhees J, Cohen-Gadol A, Spencer D (2005) Early evolution of neurological surgery: conquering increased intracranial pressure, infection, and blood loss. Neurosurg Focus 18(4):e2

    Article  PubMed  Google Scholar 

  20. Dandy W (1918) Ventriculography following the injection of air into the cerebral ventricles. Ann Surg 68(1):5–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ferguson S, Lesniak M (2005) Percival Bailey and the classification of brain tumors. Neurosurg Focus 18(4):e7

    Article  PubMed  Google Scholar 

  22. Bailey O (1985) Genesis of the Percival Bailey-Cushing classification of gliomas. Pediatr Neurosci 12(4–5):261–265

    PubMed  Google Scholar 

  23. Globus J, Strauss I (1925) Spongioblastoma multiforme. A primary malignant from of brain neoplasm: its clinical and anatomic features. Arch Neurol Psychiatr 14 (2):139–191

  24. Bailey P, Cushing H (1925) Medulloblastoma Cerebelli. A common type of midcerebellar glioma of childhood. Arch Neurol Psychiatr 14 (2):192–224

    Article  Google Scholar 

  25. Bailey P, Cushing H (1926) A classification of the tumors of the Glioma group on histogenetic basis with correlated study of prognosis. JB Lipponcott, Philadelphia

    Google Scholar 

  26. Scheithauer B (2008) Development of the WHO classification of tumors of the central nervous system: a historical perspective. Brain Pathol 19(4):551–564

    Article  Google Scholar 

  27. Canale D, Longo L (1990) Harvey Cushing and pediatric neurosurgery. Neurosurgery 27(4):602–610

    Article  CAS  PubMed  Google Scholar 

  28. Bailey P (1927) Further remarks concerning tumors of the glioma group. Bull Johns Hopkins Hosp 40:354–389

    Google Scholar 

  29. Bradač G, Büll U, Fahlbusch R, Grumme T, Kazner E, Kretzschmar K, Lanksch W, Meese W, Schramm J, Steinhoff H, Stochdorph O, Wende S (1982) Computed tomography in intracranial tumors: differential diagnosis and clinical aspects. Springer, Berlin

    Book  Google Scholar 

  30. Bailey P (1933) Intracranial tumors. C.C. Thomas, Springfield

    Google Scholar 

  31. Penfield W (1931) The classification of gliomas and neuroglia cell types. Arch Neurol Psychiatr 26 (4):745–753

    Article  Google Scholar 

  32. Zülch K (1981) Historical development of the classification of brain tumours and the new proposal of the World Health Organization (WHO). Neurosurg Rev 4(3):123–127

    Article  PubMed  Google Scholar 

  33. Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19(4):764–772

    Article  CAS  PubMed  Google Scholar 

  34. Peiffer J, Kleihues P (1999) Hans-Joachim Scherer (1906–1945), pioneer in glioma research. Brain Pathol 9(2):241–245

    Article  CAS  PubMed  Google Scholar 

  35. Scherer H (1940) Cerebral astrocytomas and their derivatives. Am J Cancer 40(2):159–198

    Google Scholar 

  36. Lee K, Choe G, Nam K, Seo A, Yun S, Kim K, Cho H, Park S (2013) Immunohistochemical classification of primary and secondary glioblastomas. Korean J Pathol 47(6):541–548

    Article  PubMed  PubMed Central  Google Scholar 

  37. Spiegel E, Wycis H, Marks M, Lee A (1947) Stereotaxic apparatus for operations on the human brain. Science 106(2754):349–350

    Article  CAS  PubMed  Google Scholar 

  38. Uluç K, Kujoth G, Başkaya M (2009) Operating microscopes: past, present, and future. Neurosurg Focus 27(3):e4

    Article  PubMed  Google Scholar 

  39. Sachs S (1950) The problem of glioblastomas. J Neurosurg 7(3):185–189

    Article  CAS  PubMed  Google Scholar 

  40. Zülch K (1986) Brain tumours. Their biology and pathology. 3rd edn. Springer, Berlin

    Google Scholar 

  41. Netsky M, August B, Fowler W (1950) The longevity of patients with glioblastoma multiforme. J Neurosurg 7(3):261–269

    Article  CAS  PubMed  Google Scholar 

  42. Delgado-López P, Corrales-García E (2016) Survival in glioblastoma: a review on the impact of treatment modalities. Clin Transl Oncol 18(11):1062–1072

    Article  PubMed  CAS  Google Scholar 

  43. Mut M, Lopes M, Shaffrey M (2005) Lucien J. Rubinstein: enduring contributions to neuro-oncology. Neurosurg Focus 18(4):e8

    Article  PubMed  Google Scholar 

  44. Roth J, Elvidge A (1960) Glioblastoma multiforme: a clinical survey. J Neurosurg 17(4):736–750

    Article  CAS  PubMed  Google Scholar 

  45. Lindquist C (1995) Gamma knife radiosurgery. Semin Radiat Oncol 5(3):197–202

    Article  CAS  PubMed  Google Scholar 

  46. Yanagihara T, Saadatmand H, Wang T (2016) Reevaluating stereotactic radiosurgery for glioblastoma: new potential for targeted dose-escalation. J Neurooncol 130:397–411. doi:10.1007/s11060-016-2270-2

    Article  PubMed  Google Scholar 

  47. Hounsfield G (1973) Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 46(552):1016–1022

    Article  CAS  PubMed  Google Scholar 

  48. Lauterbur P (1973) Image formation by induced local interactions: examples of employing nuclear magnetic resonance. Nature 242:190–191

    Article  CAS  Google Scholar 

  49. Daumas-Duport C, Scheithauer B, O’Fallon J, Kelly P (1988) Grading of astrocytomas. A simple and reproducible method. Cancer 62(10):2152–2165

    Article  CAS  PubMed  Google Scholar 

  50. Zülch K (1980) Principles of the new World Health Organization (WHO) classification of brain tumors. Neuroradiology 19(2):59–66

    Article  PubMed  Google Scholar 

  51. Buckner J, Brown P, O’Neill B, Meyer F, Wetmore C, Uhm J (2007) Central nervous system tumors. Mayo Clin Proc 82(10):1271–1286

    Article  PubMed  Google Scholar 

  52. Agnihotri S, Burrell K, Wolf A, Jalali S, Hawkins C, Rutka J, Zadeh G (2013) Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch Immunol Ther Exp (Warsz) 61(1):25–41

    Article  CAS  Google Scholar 

  53. Dandy W (1928) Removal of right cerebral hemisphere for certain tumors with hemiplegia: preliminary report. J Am Med Assoc 90(11):823–825

    Article  Google Scholar 

  54. Wright J, Chugh J, Wright C, Alonso F, Hdeib A, Gittleman H, Barnholtz-Sloan J, Sloan A (2016) Laser interstitial thermal therapy followed by minimal-access transsulcal resection for the treatment of large and difficult to access brain tumors. Neurosurg Focus 41(4):e14

    Article  PubMed  Google Scholar 

  55. Hervey-Jumper S, Berger M (2016) Maximizing safe resection of low- and high-grade glioma. J Neurooncol 130:269–282

    Article  PubMed  Google Scholar 

  56. Yong R, Lonser R (2011) Surgery for glioblastoma multiforme: striking a balance. World Neurosurg 76 (6):528–530

    Article  PubMed  PubMed Central  Google Scholar 

  57. Young R, Jamshidi A, Davis G, Sherman J (2015) Current trends in the surgical management and treatment of adult glioblastoma. Ann Transl Med 3(9):121

    PubMed  PubMed Central  Google Scholar 

  58. Smets T, Lawson T, Grandin C, Jankovski A, Raftopoulos C (2013) Immediate post-operative MRI suggestive of the site and timing of glioblastoma recurrence after gross total resection: a retrospective longitudinal preliminary study. Eur Radiol 23(6):1467–1477

    Article  PubMed  Google Scholar 

  59. Mirimanoff R, Gorlia T, Mason W, van den Bent M, Kortmann R, Fisher B, Reni M, Brandes A, Curschmann J, Villa S, Cairncross G, Allgeier A, Lacombe D, Stupp R (2006) Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of the EORTC 26981/22981-NCIC CE3 phase III randomized trial. J Clin Oncol 24(16):2563–2569

    Article  CAS  PubMed  Google Scholar 

  60. Patel D, Agarwal N, Tomei K, Hansberry D, Goldstein I (2015) Optimal timing of whole-brain radiation therapy following craniotomy for cerebral malignancies. World Neurosurg 84 (2):412–419

    Article  PubMed  Google Scholar 

  61. Stupp R, Brada M, van den Bent M, Tonn J, Pentheroudakis G (2014) High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 25(3):93–101

    Article  Google Scholar 

  62. Corso C, Bindra R (2016) Success and failures of combined modalities in glioblastoma multiforme: old problems and new directions. Semin Radiat Oncol 26(4):281–298

    Article  PubMed  Google Scholar 

  63. Ehrlich P (1913) Address in pathology on chemotherapeutics: scientific principles, methods, and results. Lancet 2(5694):445–451

    Google Scholar 

  64. Krumbhaar E, Krunbhaar H (1919) The blood and bone barrow in yellow cross gas (mustard gas) poisoning. J Med Res 40(3):497–508

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Krumbhaar E (1919) Rôle of the blood and bone marrow in certain forms of gas poisoning: I. Peripheral blood changes and their significance. J Am Med Assoc 72(1):39–41

    Article  Google Scholar 

  66. Fenn J, Udelsman R (2011) First use of intravenous chemotherapy cancer treatment: rectifying the record. J Am Coll Surg 212(3):413–417

    Article  PubMed  Google Scholar 

  67. Thomas R, Recht L, Nagpal S (2013) Advances in the management of glioblastoma: the role of temozolomide and MGMT testing. Clin Pharmacol 5:1–9

    CAS  PubMed  Google Scholar 

  68. Connors T (1996) Anticancer drug development: the way forward. Oncologist 1(3):180–181

    CAS  PubMed  Google Scholar 

  69. Deeken J, Löscher W (2007) The blood–brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 13(6):1663–1674

    Article  CAS  PubMed  Google Scholar 

  70. Rubin P, Gash D, Hansen J, Nelson D, Williams J (1994) Disruption of the blood–brain barrier as the primary effect of CNS irradiation. Radiother Oncol 31(1):51–60

    Article  CAS  PubMed  Google Scholar 

  71. Muldoon L, Soussain C, Jahnke K, Johanson C, Siegal T, Smith Q, Hall W, Hynynen K, Senter P, Peereboom D, Neuwelt E (2007) Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 25(16):2295–2305

    Article  CAS  PubMed  Google Scholar 

  72. Cohen M, Shen Y, Keegan P, Pazdur R (2009) FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist 14(11):1131–1138

    Article  CAS  PubMed  Google Scholar 

  73. Ashby L, Smith K, Stea B (2016) Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: a systematic literature review. World J Surg Oncol 14(1):225

    Article  PubMed  PubMed Central  Google Scholar 

  74. Westphal M, Hilt D, Bortey E, Delavault P, Olivares R, Warnke P, Whittle I, Jääskeläinen J, Ram Z (2003) A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-Oncology 5 (2):79–88

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bock H, Puchner M, Lohmann F, Schütze M, Koll S, Ketter R, Buchalla R, Rainov N, Kantelhardt S, Rohde V, Giese A (2010) First-line treatment of malignant glioma with carmustine implants followed by concomitant radiochemotherapy: a multicenter experience. Neurosurg Rev 33(4):441–449

    Article  PubMed  PubMed Central  Google Scholar 

  76. Brem H, Piantadosi S, Burger P, Walker M, Selker R, Vick N, Black K, Sisti M, Brem S, Mohr G, Muller P, Morawetz R, Clifford Schold S, Group P-BTT (1995) Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. Lancet 345(8956):1008–1012

    Article  CAS  PubMed  Google Scholar 

  77. Borner M, Scheithauer W, Twelves C, Maroun J, Wilke H (2001) Answering patients’ needs: oral alternatives to intravenous therapy. Oncologist 6(Suppl 4):12–16

    Article  PubMed  Google Scholar 

  78. Liu G, Franssen E, Fitch M, Warner E (1997) Patient preferences for oral versus intravenous palliative chemotherapy. J Clin Oncol 15(1):110–115

    Article  CAS  PubMed  Google Scholar 

  79. Brada M, Stenning S, Gabe R, Thompson L, Levy D, Rampling R, Erridge S, Saran F, Gattamaneni R, Hopkins K, Beall S, Collins V, Lee S (2010) Temozolomide versus procarbazine, lomustine, and vincristine in recurrent high-grade glioma. J Clin Oncol 28(30):4601–4608

    Article  CAS  PubMed  Google Scholar 

  80. Silber J, Bobola M, Blank A, Chamberlain M (2012) O(6)-methylguanine-DNA methyltransferase in glioma therapy: promise and problems. Biochim Biophys Acta 1826(1):71–82

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Prados M, Byron S, Tran N, Phillips J, Molinaro A, Ligon K, Wen P, Kuhn J, Mellinghoff I, de Groot J, Colman H, Cloughesy T, Chang S, Ryken T, Tembe W, Kiefer J, Berens M, Craig D, Carpten J, Trent J (2015) Toward precision medicine in glioblastoma: the promise and the challenges. Neuro-Oncology 17(8):1051–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Davies A, Weinberg U, Palti Y (2013) Tumor treating fields: a new frontier in cancer therapy. Ann N Y Acad Sci 1291:86–95

    Article  PubMed  Google Scholar 

  83. Taillibert S, Le Rhun E, Chamberlain M (2015) Tumor treating fields: a new standard treatment for glioblastoma? Curr Opin Neurol 28(6):659–664

    Article  CAS  PubMed  Google Scholar 

  84. Domingo-Musibay E, Galanis E (2015) What next for newly diagnosed glioblastoma? Future Oncol 11(24):3273–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stupp R, Wong E, Kanner A, Steinberg D, Engelhard H, Heidecke V, Kirson E, Taillibert S, Liebermann F, Dbalý V, Ram Z, Villano J, Rainov N, Weinberg U, Schiff D, Kunschner L, Raizer J, Honnorat J, Sloan A, Malkin M, Landolfi J, Payer F, Mehdorn M, Weil R, Pannullo S, Westphal M, Smrcka M, Chin L, Kostron H, Hofer S, Bruce J, Cosgrove R, Paleologous N, Palti Y, Gutin P (2012) NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48(14):2192–2202

    Article  PubMed  Google Scholar 

  86. Wick W, Weller M, van den Bent M, Stupp R (2010) Bevacizumab and recurrent malignant gliomas: a European perspective. J Clin Oncol 28(12):188–189

    Article  Google Scholar 

  87. Desjardins A (2015) Neuro-oncology: what is the optimal use of bevacizumab in glioblastoma? Nat Rev Neurol 11(8):429–430

    Article  PubMed  Google Scholar 

  88. Gilbert M, Dignam J, Armstrong T, Wefel J, Blumenthal D, Vogelbaum M, Colman H, Chakravarti A, Pugh S, Won M, Jeraj R, Brown P, Jaeckle K, Schiff D, Stieber V, Brachman D, Werner-Wasik M, Tremont-Lukats I, Sulman E, Aldape K, Curran WJ, Mehta M (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370(8):699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chinot O, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier A, Hoang-Xuan K, Kavan F, Cernea D, Brandes A, Hilton M, Abrey L, Cloughesy T (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370(8):709–722

    Article  CAS  PubMed  Google Scholar 

  90. Wick W, Chinot O, Bendszus M, Mason W, Henriksson R, Saran F, Nishikawa R, Revil C, Kerloeguen Y, Cloughesy T (2016) Evaluation of pseudoprogression rates and tumor progression patterns in a phase III trial of bevacizumab plus radiotherapy/temozolomide for newly diagnosed glioblastoma. Neuro-Oncology 18 (10):1434–1441

    Article  PubMed  Google Scholar 

  91. Chinot O, Nishikawa R, Mason W, Henriksson R, Saran F, Cloughesy T, Garcia J, Revil C, Abrey L, Wick W (2016) Upfront bevacizumab may extend survival for glioblastoma patients who do not receive second-line therapy: an exploratory analysis of AVAglio. Neuro-Oncology 18(9):1313–1318

    Article  PubMed  Google Scholar 

  92. Rose S (2011) FDA pulls approval for Avastin in breast cancer. Cancer Discov 1(7):1–2

    Google Scholar 

  93. Kovic B, Xie F (2015) Economic evaluation of bevacizumab for the first-line treatment of newly diagnosed glioblastoma multiforme. J Clin Oncol 33(20):2296–2302

    Article  PubMed  Google Scholar 

  94. Campos B, Olsen L, Urup T, Poulsen H (2016) A comprehensive profile of recurrent glioblastoma. Oncogene 35:5819–5825

    Article  CAS  PubMed  Google Scholar 

  95. Sun H, Du S, Liao G, Xie X, Ren C, Yuan Y (2015) Do glioma patients derive any therapeutic benefit from taking a higher cumulative dose of temozolomide regimens? A meta-analysis. Medicine (Baltimore) 94(20):e827

    Article  CAS  Google Scholar 

  96. Tosoni A, Franceschi E, Poggi R, Brandes A (2016) Relapsed glioblastoma: treatment strategies for initial and subsequent recurrences. Curr Treat Options Oncol 17(9):49

    Article  PubMed  Google Scholar 

  97. Yin A, Cheng J, Zhang X, Liu B (2013) The treatment of glioblastomas: a systematic update on clinical Phase III trials. Crit Rev Oncol Hematol 87(3):265–282

    Article  PubMed  Google Scholar 

  98. clinicaltrials.gov National Library of Medicine (US) Accessed 31 Oct 2016

  99. Tavano L, Muzzalupo R (2016) Multi-functional vesicles for cancer therapy: the ultimate magic bullet. Colloids Surfaces B 147:161–171

    Article  CAS  Google Scholar 

  100. Stupp R, Hegi M, Mason W, van den Bent M, Taphoorn M, Janzer R, Ludwin S, Allgeier A, Fisher B, Belanger K, Hau P, Brandes A, Gijtenbeek J, Marosi C, Vecht C, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross J, Mirimanoff R, Groups EOfRaToCBTaRO, Group NCIoCCT (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466

    Article  CAS  PubMed  Google Scholar 

  101. Scott J, Bauchet L, Fraum T, Nayak L, Cooper A, Chao S, Suh J, Vogelbaum M, Peereboom D, Zouaoui S, Mathieu-Daudé H, Fabbro-Peray P, Rigau V, Taillandier L, Abrey L, DeAngelis L, Shih J, Iwamoto F (2012) Recursive partitioning analysis of prognostic factors for glioblastoma patients aged 70 years or older. Cancer 118(22):5595–5600

    Article  PubMed  PubMed Central  Google Scholar 

  102. Neagu M, Reardon D (2015) An update on the role of immunotherapy and vaccine strategies for primary brain tumors. Curr Treat Options Oncol 16(11):54

    Article  PubMed  Google Scholar 

  103. Sampson J, Mitchell D (2015) Vaccination strategies for neuro-oncology. Neuro-Oncology 17 (7):15–25

    Article  CAS  Google Scholar 

  104. Ardon H, Van Gool S, Lopes I, Maes W, Sciot R, Wilms G, Demaerel P, Bijttebier P, Claes L, Goffin J, Van Calenbergh F, De Vleeschouwer S (2010) Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J Neurooncol 99(2):261–272

    Article  CAS  PubMed  Google Scholar 

  105. Schijns V, Pretto C, Devillers L, Pierre D, Hofman F, Chen T, Mespouille P, Hantos P, Glorieux P, Bota D, Stathopoulos A (2015) First clinical results of a personalized immunotherapeutic vaccine against recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM) tumors, based on combined allo- and auto-immune tumor reactivity. Vaccine 33(23):269–2696

    Article  CAS  Google Scholar 

  106. Reijneveld J, Voest E, Taphoorn M (2000) Angiogenesis in malignant primary and metastatic brain tumors. J Neurol 247(8):597–608

    Article  CAS  PubMed  Google Scholar 

  107. Scaringi C, Enrici R, Minniti G (2013) Combining molecular targeted agents with radiation therapy for malignant gliomas. Onco Targets Ther 6:1079–1095

    CAS  PubMed  PubMed Central  Google Scholar 

  108. McGee M, Hamner J, Williams R, Rosati S, Sims T, Ng C, Gaber M, Calabrese C, Wu J, Nathwani A, Duntsch C, Merchant T, Davidoff A (2010) Improved intratumoral oxygenation through vascular normalization increases glioma sensitivity to ionizing radiation. Int J Radiat Oncol Biol Phys 76(5):1537–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gupta V, Jaskowiak N, Beckett M, Mauceri H, Grunstein J, Johnson R, Calvin D, Nodzenski E, Pejovic M, Kufe D, Posner M, Weichselbaum R (2002) Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J 8(1):47–54

    Article  PubMed  Google Scholar 

  110. Bolderson E, Richard D, Zhou B, Khanna K (2009) Recent advances in cancer therapy targeting proteins involved in DNA double-strand break repair. Clin Cancer Res 15(20):6314–6320

    Article  CAS  PubMed  Google Scholar 

  111. Rouleau M, Patel A, Hendzel M, Kaufmann S, Poirier G (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10(4):293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bryant H, Schultz N, Thomas H, Parker K, Flower D, Lopez E, Kyle S, Meuth M, Curtin N, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 343(7035):913–917

    Article  CAS  Google Scholar 

  113. Farmer H, McCabe N, Lord C, Tutt A, Johnson D, Richardson T, Santarosa M, Dillon K, Hickson I, Knights C, Martin N, Jackson S, Smith G, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921

    Article  CAS  PubMed  Google Scholar 

  114. Powell C, Mikropoulos C, Kaye S, Nutting C, Bhide S, Newbold K, Harrington K (2010) Pre-clinical and clinical evaluation of PARP inhibitors as tumour-specific radiosensitisers. Cancer Treat Rev 36(7):566–575

    Article  CAS  PubMed  Google Scholar 

  115. Senra J, Telfer B, Cherry K, McCrudden C, Hirst D, O’Connor M, Wedge S, Stratford I (2011) Inhibition of PARP-1 by olaparib (AZD2281) increases the radiosensitivity of a lung tumor xenograft. Mol Cancer Ther 10(10):1949–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bonnet D, Dick J (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med 3(7):730–737

    Article  CAS  PubMed  Google Scholar 

  117. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021

    Article  CAS  PubMed  Google Scholar 

  118. Beier D, Röhrl S, Pillai D, Schwarz S, Kunz-Schughart L, Leukel P, Proescholdt M, Brawanski A, Bogdahn U, Trampe-Kieslich A, Giebel B, Wischhusen J, Reifenberger G, Hau P, Beier C (2008) Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer Res 68(14):5706–5715

    Article  CAS  PubMed  Google Scholar 

  119. Hegi M, Diserens A, Gorlia T, Hamou M, de Tribolet N, Weller M, Kros J, Hainfellner J, Mason W, Mariani L, Bromberg J, Hau P, Mirimanoff R, Cairncross J, Janzer R, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003

    Article  CAS  PubMed  Google Scholar 

  120. Lathia J, Mack S, Mulkearns-Hubert E, Valentim C, Rich J (2015) Cancer stem cells in glioblastoma. Genes Dev 29(12):1203–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gupta P, Onder T, Jiang G, Tao K, Kuperwasser C, Weinberg R, Lander E (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138(4):645–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Qin L, Jia P, Zhang Z, Zhang S (2015) ROS-p53-cyclophilin-D signaling mediates salinomycin-induced glioma cell necrosis. J Exp Clin Canc Res 34:57

    Article  CAS  Google Scholar 

  123. Calzolari A, Saulle E, De Angelis M, Pasquini L, Boe A, Pelacchi F, Ricci-Vitiani L, Baiocchi M, Testa U (2014) Salinomycin potentiates the cytotoxic effects of TRAIL on glioblastoma cell lines. PLoS One 9(4):e94438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Pardridge W (2007) Blood–brain barrier delivery. Drug Discov Today 12(1–2):54–61

    Article  CAS  PubMed  Google Scholar 

  125. Vogelbaum M, Aghi M (2015) Convection-enhanced delivery for the treatment of glioblastoma. Neuro-Oncology 17 (Suppl 2):3–8

    Article  Google Scholar 

  126. Hynynen K, McDannold N, Vykhodtseva N, Jolesz F (2003) Non-invasive opening of BBB by focused ultrasound. Acta Neurochir Suppl 86:555–558

    CAS  PubMed  Google Scholar 

  127. Choi J, Feshitan J, Baseri B, Wang S, Tung Y, Borden M, Konofagou E (2010) Microbubble-size dependence of focused ultrasound-induced blood–brain barrier opening in mice in vivo. IEEE Trans Bio-Med Eng 57(1):145–154

    Article  Google Scholar 

  128. Liu H, Hsu P, Lin C, Huang C, Chai W, Chu P, Huang C, Chen P, Yang L, Kuo J, Wei K (2016) Focused ultrasound enhances central nervous system delivery of bevacizumab for malignant glioma treatment. Radiology 281(1):99–108

    Article  PubMed  Google Scholar 

  129. Carpentier A, Canney M, Vignot A, Reina V, Beccaria K, Horodyckid C, Karachi C, Leclercq D, Lafon C, Chapelon J, Capelle L, Cornu P, Sanson M, Hoang-Xuan K, Delattre J, Idbaih A (2016) Clinical trial of blood–brain barrier disruption by pulsed ultrasound. Sci Transl Med 8 (343):343re342

  130. Sarkar G, Curran G, Sarkaria J, Lowe V, Jenkins R (2014) Peptide carrier-mediated non-covalent delivery of unmodified cisplatin, methotrexate and other agents via intravenous route to the brain. PLoS One 9(5):e97655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Allen T, Cullis P (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822

    Article  CAS  PubMed  Google Scholar 

  132. Peer D, Karp J, Hong S, Farokhzad O, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  CAS  PubMed  Google Scholar 

  133. Gutkin A, Cohen Z, Peer D (2016) Harnessing nanomedicine for therapeutic intervention in glioblastoma. Expert Opin Drug Deliv 13(11):1573–1582

    Article  CAS  PubMed  Google Scholar 

  134. Kim S, Harford J, Pirollo K, Chang E (2015) Effective treatment of glioblastoma requires crossing the blood–brain barrier and targeting tumors including cancer stem cells: the promise of nanomedicine. Biochem Biophys Res Commun 468(3):485–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Danhier F, Messaoudi K, Lemaire L, Benoit J, Lagarce F (2015) Combined anti-Galectin-1 and anti-EGFR siRNA-loaded chitosan-lipid nanocapsules decrease temozolomide resistance in glioblastoma: in vivo evaluation. Int J Pharm 481(1–2):154–161

    Article  CAS  PubMed  Google Scholar 

  136. Bastiancich C, Vanvarenberg K, Ucakar B, Pitorre M, Bastiat G, Lagarce F, Préat V, Danhier F (2016) Lauroyl-gemcitabine-loaded lipid nanocapsule hydrogel for the treatment of glioblastoma. J Control Release 225:283–293

    Article  CAS  PubMed  Google Scholar 

  137. Hoare T, DS K (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007

    Article  CAS  Google Scholar 

  138. Bastiancich C, Danhier P, Préat V, Danhier F (2016) Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma. J Control Release 243:29–42

    Article  CAS  PubMed  Google Scholar 

  139. Vellimana A, Recinos V, Hwang L, Fowers K, Li K, Zhang Y, Okonma S, Eberhart C, Brem H, Tyler B (2013) Combination of paclitaxel thermal gel depot with temozolomide and radiotherapy significantly prolongs survival in an experimental rodent glioma model. J Neurooncol 111(3):229–236

    Article  CAS  PubMed  Google Scholar 

  140. Fourniols T, Randolph L, Staub A, Vanvarenberg K, Leprince J, Préat V, des Rieux A, Danhier F (2015) Temozolomide-loaded photopolymerizable PEG-DMA-based hydrogel for the treatment of glioblastoma. J Control Release 210:95–104

    Article  CAS  PubMed  Google Scholar 

  141. Marchesi F, Turriziani M, Tortorelli G, Avvisati G, Torino F, De Vecchis L (2007) Triazene compounds: mechanism of action and related DNA repair systems. Pharmacol Res 56(4):275–287

    Article  CAS  PubMed  Google Scholar 

  142. Perazzoli G, Prados J, Ortiz R, Caba O, Cabeza L, Berdasco M, Gónzalez B, Melguizo C (2015) Temozolomide resistance in glioblastoma cell lines: implication of MGMT, MMR, P-glycoprotein and CD133 expression. PLoS One 10(10):e0140131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Weller M, Stupp R, Reifenberger G, Brandes A, van den Bent M, Wick W, Hegi M (2010) MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol 6(1):39–51

    Article  CAS  PubMed  Google Scholar 

  144. Parker N, Khong P, Parkinson J, Howell V, Wheeler H (2015) Molecular heterogeneity in glioblastoma: potential clinical implications. Front Oncol 5:55

    PubMed  PubMed Central  Google Scholar 

  145. Messaoudi K, Clavreul C, Danhier F, Saulnier P, Benoît J-P, Lagarce F (2015) Combined silencing expression of MGMT with EGFR or galectin-1 enhances the sensitivity of glioblastoma to temozolomide. Eur J Nanomed 7(2):97–107

    Article  CAS  Google Scholar 

  146. Kaina B, Margison G, Christmann M (2010) Targeting O 6-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy. Cell Mol Life Sci 67(21):3663–3681

    Article  CAS  PubMed  Google Scholar 

  147. Ramirez Y, Mladek A, Phillips R, Gynther M, Rautio J, Ross A, Wheelhouse R, Sakaria J (2015) Evaluation of novel imidazotetrazine analogues designed to overcome temozolomide resistance and glioblastoma regrowth. Mol Cancer Ther 14(1):111–119

    Article  CAS  PubMed  Google Scholar 

  148. Rich J, Bigner D (2004) Development of novel targeted therapies in the treatment of malignant glioma. Nat Rev Drug Discov 3(5):430–446

    Article  CAS  PubMed  Google Scholar 

  149. Verschuere T, Toelen J, Maes W, Poirier F, Boon L, Tousseyn T, Mathivet T, Gerhardt H, Mathieu V, Kiss R, Lefranc F, Van Gool S, De Vleeschouwer S (2014) Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity. Int J Cancer 134(4):873–884

    Article  CAS  PubMed  Google Scholar 

  150. Le Mercier M, Fortin S, Mathieu V, Kiss R, Lefranc F (2010) Galectins and gliomas. Brain Pathol 20(1):17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Camby I, Decaestecker C, Lefranc F, Kaltner H, Gabius H, Kiss R (2005) Galectin-1 knocking down in human U87 glioblastoma cells alters their gene expression pattern. Biochem Biophys Res Commun 335(1):27–35

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are recipients of subsidies from the Fonds National de la Recherche Scientifique (FNRS), the Fonds Spéciaux de Recherche Scientifique (FSR, UCL), as well as the BEWARE Academia Programme (COFUND). The authors would also like to thank Professor Samuel H. Greenblatt for personal communication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John Bianco or Véronique Préat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

J. Bianco and C. Bastiancich contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianco, J., Bastiancich, C., Jankovski, A. et al. On glioblastoma and the search for a cure: where do we stand?. Cell. Mol. Life Sci. 74, 2451–2466 (2017). https://doi.org/10.1007/s00018-017-2483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2483-3

Keywords

Navigation