Skip to main content

Advertisement

Log in

Mitochondrial dynamics as regulators of cancer biology

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mitochondria are dynamic organelles that supply energy required to drive key cellular processes, such as survival, proliferation, and migration. Critical to all of these processes are changes in mitochondrial architecture, a mechanical mechanism encompassing both fusion and fragmentation (fission) of the mitochondrial network. Changes to mitochondrial shape, size, and localization occur in a regulated manner to maintain energy and metabolic homeostasis, while deregulation of mitochondrial dynamics is associated with the onset of metabolic dysfunction and disease. In cancers, oncogenic signals that drive excessive proliferation, increase intracellular stress, and limit nutrient supply are all able to alter the bioenergetic and biosynthetic requirements of cancer cells. Consequently, mitochondrial function and shape rapidly adapt to these hostile conditions to support cancer cell proliferation and evade activation of cell death programs. In this review, we will discuss the molecular mechanisms governing mitochondrial dynamics and integrate recent insights into how changes in mitochondrial shape affect cellular migration, differentiation, apoptosis, and opportunities for the development of novel targeted cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wai T, Langer T (2016) Mitochondrial dynamics and metabolic regulation. TEM 27(2):105–117. doi:10.1016/j.tem.2015.12.001

    CAS  PubMed  Google Scholar 

  2. Archer SL (2013) Mitochondrial dynamics–mitochondrial fission and fusion in human diseases. N Engl J Med 369(23):2236–2251. doi:10.1056/NEJMra1215233

    Article  CAS  PubMed  Google Scholar 

  3. Lewis MR, Lewis WH (1915) Mitochondria (and other cytoplasmic structures) in tissue cultures. Am J Anat 17(3):339–401. doi:10.1002/aja.1000170304

    Article  Google Scholar 

  4. Jakobs S (2006) High resolution imaging of live mitochondria. Biochim Biophys Acta 1763(5–6):561–575. doi:10.1016/j.bbamcr.2006.04.004

    Article  CAS  PubMed  Google Scholar 

  5. Karbowski M, Lee YJ, Gaume B, Jeong SY, Frank S, Nechushtan A, Santel A, Fuller M, Smith CL, Youle RJ (2002) Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol 159(6):931–938. doi:10.1083/jcb.200209124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160(2):189–200. doi:10.1083/jcb.200211046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280(28):26185–26192. doi:10.1074/jbc.M503062200

    Article  CAS  PubMed  Google Scholar 

  8. Feely SM, Laura M, Siskind CE, Sottile S, Davis M, Gibbons VS, Reilly MM, Shy ME (2011) MFN2 mutations cause severe phenotypes in most patients with CMT2A. Neurology 76(20):1690–1696. doi:10.1212/WNL.0b013e31821a441e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Verhoeven K, Claeys KG, Zuchner S, Schroder JM, Weis J, Ceuterick C, Jordanova A, Nelis E, De Vriendt E, Van Hul M, Seeman P, Mazanec R, Saifi GM, Szigeti K, Mancias P, Butler IJ, Kochanski A, Ryniewicz B, De Bleecker J, Van den Bergh P, Verellen C, Van Coster R, Goemans N, Auer-Grumbach M, Robberecht W, Milic Rasic V, Nevo Y, Tournev I, Guergueltcheva V, Roelens F, Vieregge P, Vinci P, Moreno MT, Christen HJ, Shy ME, Lupski JR, Vance JM, De Jonghe P, Timmerman V (2006) MFN2 mutation distribution and genotype/phenotype correlation in Charcot-Marie-Tooth type 2. Brain J Neurol 129(Pt 8):2093–2102. doi:10.1093/brain/awl126

    Article  Google Scholar 

  10. Vallat JM, Ouvrier RA, Pollard JD, Magdelaine C, Zhu D, Nicholson GA, Grew S, Ryan MM, Funalot B (2008) Histopathological findings in hereditary motor and sensory neuropathy of axonal type with onset in early childhood associated with mitofusin 2 mutations. J Neuropathol Exp Neurol 67(11):1097–1102. doi:10.1097/NEN.0b013e31818b6cbc

    Article  PubMed  Google Scholar 

  11. Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99. doi:10.1146/annurev.cellbio.22.010305.104638

    Article  CAS  PubMed  Google Scholar 

  12. Chen H, Chan DC (2009) Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum Mol Genet 18(R2):R169–R176. doi:10.1093/hmg/ddp326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM, Chan DC (2004) Structural basis of mitochondrial tethering by mitofusin complexes. Science 305(5685):858–862. doi:10.1126/science.1099793

    Article  CAS  PubMed  Google Scholar 

  14. Hoppins S, Edlich F, Cleland MM, Banerjee S, McCaffery JM, Youle RJ, Nunnari J (2011) The soluble form of Bax regulates mitochondrial fusion via MFN2 homotypic complexes. Mol Cell 41(2):150–160. doi:10.1016/j.molcel.2010.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leboucher GP, Tsai YC, Yang M, Shaw KC, Zhou M, Veenstra TD, Glickman MH, Weissman AM (2012) Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Mol Cell 47(4):547–557. doi:10.1016/j.molcel.2012.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Park YY, Nguyen OT, Kang H, Cho H (2014) MARCH5-mediated quality control on acetylated Mfn1 facilitates mitochondrial homeostasis and cell survival. Cell Death Dis 5:e1172. doi:10.1038/cddis.2014.142

    Article  CAS  PubMed  Google Scholar 

  17. Park YY, Cho H (2012) Mitofusin 1 is degraded at G2/M phase through ubiquitylation by MARCH5. Cell Div 7(1):25. doi:10.1186/1747-1028-7-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334(6054):358–362. doi:10.1126/science.1207385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Naon D, Zaninello M, Giacomello M, Varanita T, Grespi F, Lakshminaranayan S, Serafini A, Semenzato M, Herkenne S, Hernandez-Alvarez MI, Zorzano A, De Stefani D, Dorn GW 2nd, Scorrano L (2016) Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc Natl Acad Sci USA 113(40):11249–11254. doi:10.1073/pnas.1606786113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Davies VJ, Hollins AJ, Piechota MJ, Yip W, Davies JR, White KE, Nicols PP, Boulton ME, Votruba M (2007) Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum Mol Genet 16(11):1307–1318. doi:10.1093/hmg/ddm079

    Article  CAS  PubMed  Google Scholar 

  21. Ranieri M, Del Bo R, Bordoni A, Ronchi D, Colombo I, Riboldi G, Cosi A, Servida M, Magri F, Moggio M, Bresolin N, Comi GP, Corti S (2012) Optic atrophy plus phenotype due to mutations in the OPA1 gene: two more Italian families. J Neurol Sci 315(1–2):146–149. doi:10.1016/j.jns.2011.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Belenguer P, Pellegrini L (2013) The dynamin GTPase OPA1: more than mitochondria? Biochim Biophys Acta 1833(1):176–183. doi:10.1016/j.bbamcr.2012.08.004

    Article  CAS  PubMed  Google Scholar 

  23. Hoppins S, Nunnari J (2009) The molecular mechanism of mitochondrial fusion. Biochim Biophys Acta 1793(1):20–26. doi:10.1016/j.bbamcr.2008.07.005

    Article  CAS  PubMed  Google Scholar 

  24. Guillery O, Malka F, Landes T, Guillou E, Blackstone C, Lombes A, Belenguer P, Arnoult D, Rojo M (2008) Metalloprotease-mediated OPA1 processing is modulated by the mitochondrial membrane potential. Biol Cell 100(5):315–325. doi:10.1042/BC20070110

    Article  CAS  PubMed  Google Scholar 

  25. Braschi E, Zunino R, McBride HM (2009) MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Rep 10(7):748–754. doi:10.1038/embor.2009.86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Prudent J, Zunino R, Sugiura A, Mattie S, Shore GC, McBride HM (2015) MAPL SUMOylation of Drp1 stabilizes an ER/Mitochondrial platform required for cell death. Mol Cell 59(6):941–955. doi:10.1016/j.molcel.2015.08.001

    Article  CAS  PubMed  Google Scholar 

  27. Di Bacco A, Ouyang J, Lee HY, Catic A, Ploegh H, Gill G (2006) The SUMO-specific protease SENP5 is required for cell division. Mol Cell Biol 26(12):4489–4498. doi:10.1128/MCB.02301-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zunino R, Braschi E, Xu L, McBride HM (2009) Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis. J Biol Chem 284(26):17783–17795. doi:10.1074/jbc.M901902200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324(5923):102–105. doi:10.1126/science.1171091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bossy B, Petrilli A, Klinglmayr E, Chen J, Lutz-Meindl U, Knott AB, Masliah E, Schwarzenbacher R, Bossy-Wetzel E (2010) S-Nitrosylation of DRP1 does not affect enzymatic activity and is not specific to Alzheimer’s disease. J Alzheimer’s Dis JAD 20(Suppl 2):S513–S526. doi:10.3233/JAD-2010-100552

    Article  PubMed  CAS  Google Scholar 

  31. Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C, Bernardi P, Scorrano L (2008) Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci USA 105(41):15803–15808. doi:10.1073/pnas.0808249105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang H, Song P, Du L, Tian W, Yue W, Liu M, Li D, Wang B, Zhu Y, Cao C, Zhou J, Chen Q (2011) Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J Biol Chem 286(13):11649–11658. doi:10.1074/jbc.M110.144238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karbowski M, Neutzner A, Youle RJ (2007) The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J Cell Biol 178(1):71–84. doi:10.1083/jcb.200611064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K, Otera H, Nakanishi Y, Nonaka I, Goto Y, Taguchi N, Morinaga H, Maeda M, Takayanagi R, Yokota S, Mihara K (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11(8):958–966. doi:10.1038/ncb1907

    Article  CAS  PubMed  Google Scholar 

  35. Wakabayashi J, Zhang Z, Wakabayashi N, Tamura Y, Fukaya M, Kensler TW, Iijima M, Sesaki H (2009) The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J Cell Biol 186(6):805–816. doi:10.1083/jcb.200903065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ikeda Y, Shirakabe A, Maejima Y, Zhai P, Sciarretta S, Toli J, Nomura M, Mihara K, Egashira K, Ohishi M, Abdellatif M, Sadoshima J (2015) Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res 116(2):264–278. doi:10.1161/CIRCRESAHA.116.303356

    Article  CAS  PubMed  Google Scholar 

  37. Kageyama Y, Hoshijima M, Seo K, Bedja D, Sysa-Shah P, Andrabi SA, Chen W, Hoke A, Dawson VL, Dawson TM, Gabrielson K, Kass DA, Iijima M, Sesaki H (2014) Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO J 33(23):2798–2813. doi:10.15252/embj.201488658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Song M, Mihara K, Chen Y, Scorrano L, Dorn GW 2nd (2015) Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab 21(2):273–285. doi:10.1016/j.cmet.2014.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Otera H, Ishihara N, Mihara K (2013) New insights into the function and regulation of mitochondrial fission. Biochim Biophys Acta 1833(5):1256–1268. doi:10.1016/j.bbamcr.2013.02.002

    Article  CAS  PubMed  Google Scholar 

  40. Lee JE, Westrate LM, Wu H, Page C, Voeltz GK (2016) Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540(7631):139–143. doi:10.1038/nature20555

    Article  CAS  PubMed  Google Scholar 

  41. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339(6127):1546–1558. doi:10.1126/science.1235122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Courtois-Cox S, Jones SL, Cichowski K (2008) Many roads lead to oncogene-induced senescence. Oncogene 27(20):2801–2809. doi:10.1038/sj.onc.1210950

    Article  CAS  PubMed  Google Scholar 

  43. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, Venere M, Ditullio RA Jr, Kastrinakis NG, Levy B, Kletsas D, Yoneta A, Herlyn M, Kittas C, Halazonetis TD (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434(7035):907–913. doi:10.1038/nature03485

    Article  CAS  PubMed  Google Scholar 

  44. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi WJ, Peeper DS (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436(7051):720–724. doi:10.1038/nature03890

    Article  CAS  PubMed  Google Scholar 

  45. Shain AH, Bastian BC (2016) From melanocytes to melanomas. Nat Rev Cancer 16(6):345–358. doi:10.1038/nrc.2016.37

    Article  CAS  PubMed  Google Scholar 

  46. Warburg O, Wind F, Negelein E (1927) The Metabolism of Tumors in the Body. J Gen Physiol 8(6):519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  48. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  49. Hay N (2016) Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer 16(10):635–649. doi:10.1038/nrc.2016.77

    Article  CAS  PubMed  Google Scholar 

  50. Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12(10):685–698. doi:10.1038/nrc3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vyas S, Zaganjor E, Haigis MC (2016) Mitochondria and cancer. Cell 166(3):555–566. doi:10.1016/j.cell.2016.07.002

    Article  CAS  PubMed  Google Scholar 

  52. Zong WX, Rabinowitz JD, White E (2016) Mitochondria and cancer. Mol Cell 61(5):667–676. doi:10.1016/j.molcel.2016.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Serasinghe MN, Wieder SY, Renault TT, Elkholi R, Asciolla JJ, Yao JL, Jabado O, Hoehn K, Kageyama Y, Sesaki H, Chipuk JE (2015) Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Mol Cell 57(3):521–536. doi:10.1016/j.molcel.2015.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao X, Tian C, Puszyk WM, Ogunwobi OO, Cao M, Wang T, Cabrera R, Nelson DR, Liu C (2013) OPA1 downregulation is involved in sorafenib-induced apoptosis in hepatocellular carcinoma. Lab Investig J Tech Methods Pathol 93 (1):8–19. doi:10.1038/labinvest.2012.144

    Article  CAS  Google Scholar 

  55. Zhang GE, Jin HL, Lin XK, Chen C, Liu XS, Zhang Q, Yu JR (2013) Anti-tumor effects of Mfn2 in gastric cancer. Int J Mol Sci 14(7):13005–13021. doi:10.3390/ijms140713005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Malhotra A, Dey A, Prasad N, Kenney AM (2016) Sonic Hedgehog signaling drives mitochondrial fragmentation by suppressing mitofusins in cerebellar granule neuron precursors and medulloblastoma. Mol Cancer Res MCR 14(1):114–124. doi:10.1158/1541-7786.MCR-15-0278

    Article  CAS  PubMed  Google Scholar 

  57. Wieder SY, Serasinghe MN, Sung JC, Choi DC, Birge MB, Yao JL, Bernstein E, Celebi JT, Chipuk JE (2015) Activation of the mitochondrial fragmentation protein DRP1 correlates with BRAF(V600E) Melanoma. J Invest Dermatol 135(10):2544–2547. doi:10.1038/jid.2015.196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kashatus JA, Nascimento A, Myers LJ, Sher A, Byrne FL, Hoehn KL, Counter CM, Kashatus DF (2015) Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell 57(3):537–551. doi:10.1016/j.molcel.2015.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ferreira-da-Silva A, Valacca C, Rios E, Populo H, Soares P, Sobrinho-Simoes M, Scorrano L, Maximo V, Campello S (2015) Mitochondrial dynamics protein Drp1 is overexpressed in oncocytic thyroid tumors and regulates cancer cell migration. PloS one 10(3):e0122308. doi:10.1371/journal.pone.0122308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Sever R, Brugge JS (2015) Signal transduction in cancer. Cold Spring Harbor Perspect Med. doi:10.1101/cshperspect.a006098

    Google Scholar 

  61. Yu T, Jhun BS, Yoon Y (2011) High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission. Antioxid Redox Signal 14(3):425–437. doi:10.1089/ars.2010.3284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gan X, Huang S, Wu L, Wang Y, Hu G, Li G, Zhang H, Yu H, Swerdlow RH, Chen JX, Yan SS (2014) Inhibition of ERK-DLP1 signaling and mitochondrial division alleviates mitochondrial dysfunction in Alzheimer’s disease cybrid cell. Biochim Biophys Acta 1842(2):220–231. doi:10.1016/j.bbadis.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  63. Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC, Frederick DT, Hurley AD, Nellore A, Kung AL, Wargo JA, Song JS, Fisher DE, Arany Z, Widlund HR (2013) Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer cell 23(3):302–315. doi:10.1016/j.ccr.2013.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gopal YN, Rizos H, Chen G, Deng W, Frederick DT, Cooper ZA, Scolyer RA, Pupo G, Komurov K, Sehgal V, Zhang J, Patel L, Pereira CG, Broom BM, Mills GB, Ram P, Smith PD, Wargo JA, Long GV, Davies MA (2014) Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1alpha and oxidative phosphorylation in melanoma. Cancer Res 74(23):7037–7047. doi:10.1158/0008-5472.CAN-14-1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Luo C, Lim J-H, Lee Y, Granter SR, Thomas A, Vazquez F, Widlund HR, Puigserver P (2016) A PGC1α-mediated transcriptional axis suppresses melanoma metastasis. Nature 537 (7620):422–426. doi:10.1038/nature19347. http://www.nature.com/nature/journal/v537/n7620/abs/nature19347.html#supplementary-information

  66. Kashatus DF, Lim KH, Brady DC, Pershing NL, Cox AD, Counter CM (2011) RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat Cell Biol 13(9):1108–1115. doi:10.1038/ncb2310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lim KH, Baines AT, Fiordalisi JJ, Shipitsin M, Feig LA, Cox AD, Der CJ, Counter CM (2005) Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer cell 7(6):533–545. doi:10.1016/j.ccr.2005.04.030

    Article  CAS  PubMed  Google Scholar 

  68. Shields JM, Pruitt K, McFall A, Shaub A, Der CJ (2000) Understanding Ras: ‘it ain’t over ‘til it’s over’. Trends Cell Biol 10(4):147–154

    Article  CAS  PubMed  Google Scholar 

  69. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11(11):761–774. doi:10.1038/nrc3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pyakurel A, Savoia C, Hess D, Scorrano L (2015) Extracellular regulated kinase phosphorylates mitofusin 1 to control mitochondrial morphology and apoptosis. Mol Cell 58(2):244–254. doi:10.1016/j.molcel.2015.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Thorpe LM, Yuzugullu H, Zhao JJ (2015) PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 15(1):7–24. doi:10.1038/nrc3860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Caino MC, Ghosh JC, Chae YC, Vaira V, Rivadeneira DB, Faversani A, Rampini P, Kossenkov AV, Aird KM, Zhang R, Webster MR, Weeraratna AT, Bosari S, Languino LR, Altieri DC (2015) PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion. Proc Natl Acad Sci USA 112(28):8638–8643. doi:10.1073/pnas.1500722112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dibble CC, Manning BD (2013) Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol 15(6):555–564. doi:10.1038/ncb2763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jin SM, Youle RJ (2012) PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci 125(Pt 4):795–799. doi:10.1242/jcs.093849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chourasia AH, Tracy K, Frankenberger C, Boland ML, Sharifi MN, Drake LE, Sachleben JR, Asara JM, Locasale JW, Karczmar GS, Macleod KF (2015) Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis. EMBO Rep 16(9):1145–1163. doi:10.15252/embr.201540759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhu Y, Massen S, Terenzio M, Lang V, Chen-Lindner S, Eils R, Novak I, Dikic I, Hamacher-Brady A, Brady NR (2013) Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J Biol Chem 288(2):1099–1113. doi:10.1074/jbc.M112.399345

    Article  CAS  PubMed  Google Scholar 

  77. Tal MC, Sasai M, Lee HK, Yordy B, Shadel GS, Iwasaki A (2009) Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci USA 106(8):2770–2775. doi:10.1073/pnas.0807694106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hoshino A, Mita Y, Okawa Y, Ariyoshi M, Iwai-Kanai E, Ueyama T, Ikeda K, Ogata T, Matoba S (2013) Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nature communications 4:2308. doi:10.1038/ncomms3308

    Article  PubMed  CAS  Google Scholar 

  79. Hoshino A, Ariyoshi M, Okawa Y, Kaimoto S, Uchihashi M, Fukai K, Iwai-Kanai E, Ikeda K, Ueyama T, Ogata T, Matoba S (2014) Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic beta-cell function in diabetes. Proc Natl Acad Sci USA 111(8):3116–3121. doi:10.1073/pnas.1318951111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13(5):589–598. doi:10.1038/ncb2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Head B, Griparic L, Amiri M, Gandre-Babbe S, van der Bliek AM (2009) Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol 187(7):959–966. doi:10.1083/jcb.200906083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, Youle RJ (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191(7):1367–1380. doi:10.1083/jcb.201007013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Poole AC, Thomas RE, Yu S, Vincow ES, Pallanck L (2010) The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PloS one 5(4):e10054. doi:10.1371/journal.pone.0010054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Kim I, Lemasters JJ (2011) Mitophagy selectively degrades individual damaged mitochondria after photoirradiation. Antioxidants redox signaling 14(10):1919–1928. doi:10.1089/ars.2010.3768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lemasters JJ (2014) Variants of mitochondrial autophagy: Types 1 and 2 mitophagy and micromitophagy (Type 3). Redox biology 2:749–754. doi:10.1016/j.redox.2014.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV (2015) MYC, metabolism, and cancer. Cancer Discov 5(10):1024–1039. doi:10.1158/2159-8290.CD-15-0507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Graves JA, Wang Y, Sims-Lucas S, Cherok E, Rothermund K, Branca MF, Elster J, Beer-Stolz D, Van Houten B, Vockley J, Prochownik EV (2012) Mitochondrial structure, function and dynamics are temporally controlled by c-Myc. PloS One 7(5):e37699. doi:10.1371/journal.pone.0037699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. von Eyss B, Jaenicke LA, Kortlever RM, Royla N, Wiese KE, Letschert S, McDuffus LA, Sauer M, Rosenwald A, Evan GI, Kempa S, Eilers M (2015) A MYC-driven change in mitochondrial dynamics limits YAP/TAZ function in mammary epithelial cells and breast cancer. Cancer cell 28(6):743–757. doi:10.1016/j.ccell.2015.10.013

    Article  CAS  Google Scholar 

  89. Huang H, Gao Q, Peng X, Choi SY, Sarma K, Ren H, Morris AJ, Frohman MA (2011) piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev Cell 20(3):376–387. doi:10.1016/j.devcel.2011.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Adachi Y, Itoh K, Yamada T, Cerveny KL, Suzuki TL, Macdonald P, Frohman MA, Ramachandran R, Iijima M, Sesaki H (2016) Coincident phosphatidic acid interaction restrains Drp1 in mitochondrial division. Mol Cell 63(6):1034–1043. doi:10.1016/j.molcel.2016.08.013

    Article  CAS  PubMed  Google Scholar 

  91. Manor U, Bartholomew S, Golani G, Christenson E, Kozlov M, Higgs H, Spudich J, Lippincott-Schwartz J (2015) A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. eLife. doi:10.7554/eLife.08828

    PubMed  PubMed Central  Google Scholar 

  92. Ji WK, Hatch AL, Merrill RA, Strack S, Higgs HN (2015) Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. eLife 4:e11553. doi:10.7554/eLife.11553

    PubMed  PubMed Central  Google Scholar 

  93. Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, Abel PW, Tu Y (2013) Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 32(40):4814–4824. doi:10.1038/onc.2012.494

    Article  CAS  PubMed  Google Scholar 

  94. Wan YY, Zhang JF, Yang ZJ, Jiang LP, Wei YF, Lai QN, Wang JB, Xin HB, Han XJ (2014) Involvement of Drp1 in hypoxia-induced migration of human glioblastoma U251 cells. Oncol Rep 32(2):619–626. doi:10.3892/or.2014.3235

    PubMed  Google Scholar 

  95. Yin M, Lu Q, Liu X, Wang T, Liu Y, Chen L (2016) Silencing Drp1 inhibits glioma cells proliferation and invasion by RHOA/ ROCK1 pathway. Biochem Biophys Res Commun 478(2):663–668. doi:10.1016/j.bbrc.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  96. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274. doi:10.1016/j.cell.2007.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhou H, Huang S (2011) Role of mTOR signaling in tumor cell motility, invasion and metastasis. Curr Protein Pept Sci 12 (1):30–42

    Article  PubMed  PubMed Central  Google Scholar 

  98. LeBleu VS, O’Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC, de Carvalho FM, Damascena A, Domingos Chinen LT, Rocha RM, Asara JM, Kalluri R (2014) PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol 16(10):992–1003, 1001–1015. doi:10.1038/ncb3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shiraishi T, Verdone JE, Huang J, Kahlert UD, Hernandez JR, Torga G, Zarif JC, Epstein T, Gatenby R, McCartney A, Elisseeff JH, Mooney SM, An SS, Pienta KJ (2015) Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells. Oncotarget 6(1):130–143. doi:10.18632/oncotarget.2766

    PubMed  Google Scholar 

  100. Rivadeneira DB, Caino MC, Seo JH, Angelin A, Wallace DC, Languino LR, Altieri DC (2015) Survivin promotes oxidative phosphorylation, subcellular mitochondrial repositioning, and tumor cell invasion. Sci Signal 8(389):ra80. doi:10.1126/scisignal.aab1624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Xu X, Duan S, Yi F, Ocampo A, Liu GH, Izpisua Belmonte JC (2013) Mitochondrial regulation in pluripotent stem cells. Cell Metab 18(3):325–332. doi:10.1016/j.cmet.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  102. Wanet A, Arnould T, Najimi M, Renard P (2015) Connecting mitochondria, metabolism, and stem cell fate. Stem Cells Dev 24(17):1957–1971. doi:10.1089/scd.2015.0117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Varum S, Rodrigues AS, Moura MB, Momcilovic O, Easley CAt, Ramalho-Santos J, Van Houten B, Schatten G (2011) Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PloS one 6(6):e20914. doi:10.1371/journal.pone.0020914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Buck MD, O’Sullivan D, Klein Geltink RI, Curtis JD, Chang CH, Sanin DE, Qiu J, Kretz O, Braas D, van der Windt GJ, Chen Q, Huang SC, O’Neill CM, Edelson BT, Pearce EJ, Sesaki H, Huber TB, Rambold AS, Pearce EL (2016) Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166(1):63–76. doi:10.1016/j.cell.2016.05.035

    Article  CAS  PubMed  Google Scholar 

  105. Luchsinger LL, de Almeida MJ, Corrigan DJ, Mumau M, Snoeck HW (2016) Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature 529(7587):528–531. doi:10.1038/nature16500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Khacho M, Clark A, Svoboda DS, Azzi J, MacLaurin JG, Meghaizel C, Sesaki H, Lagace DC, Germain M, Harper ME, Park DS, Slack RS (2016) Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell stem cell 19(2):232–247. doi:10.1016/j.stem.2016.04.015

    Article  CAS  PubMed  Google Scholar 

  107. Rimmele P, Liang R, Bigarella CL, Kocabas F, Xie J, Serasinghe MN, Chipuk J, Sadek H, Zhang CC, Ghaffari S (2015) Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3. EMBO Rep 16(9):1164–1176. doi:10.15252/embr.201439704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Son MJ, Kwon Y, Son MY, Seol B, Choi HS, Ryu SW, Choi C, Cho YS (2015) Mitofusins deficiency elicits mitochondrial metabolic reprogramming to pluripotency. Cell Death Differ 22(12):1957–1969. doi:10.1038/cdd.2015.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111. doi:10.1038/35102167

    Article  CAS  PubMed  Google Scholar 

  110. Ciavardelli D, Rossi C, Barcaroli D, Volpe S, Consalvo A, Zucchelli M, De Cola A, Scavo E, Carollo R, D’Agostino D, Forli F, D’Aguanno S, Todaro M, Stassi G, Di Ilio C, De Laurenzi V, Urbani A (2014) Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death Dis 5:e1336. doi:10.1038/cddis.2014.285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Emmink BL, Verheem A, Van Houdt WJ, Steller EJ, Govaert KM, Pham TV, Piersma SR, Borel Rinkes IH, Jimenez CR, Kranenburg O (2013) The secretome of colon cancer stem cells contains drug-metabolizing enzymes. J Proteom 91:84–96. doi:10.1016/j.jprot.2013.06.027

    Article  CAS  Google Scholar 

  112. Liao J, Qian F, Tchabo N, Mhawech-Fauceglia P, Beck A, Qian Z, Wang X, Huss WJ, Lele SB, Morrison CD, Odunsi K (2014) Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism. PloS One 9(1):e84941. doi:10.1371/journal.pone.0084941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Pasto A, Bellio C, Pilotto G, Ciminale V, Silic-Benussi M, Guzzo G, Rasola A, Frasson C, Nardo G, Zulato E, Nicoletto MO, Manicone M, Indraccolo S, Amadori A (2014) Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation. Oncotarget 5(12):4305–4319. doi:10.18632/oncotarget.2010

    Article  PubMed  PubMed Central  Google Scholar 

  114. Sancho P, Barneda D, Heeschen C (2016) Hallmarks of cancer stem cell metabolism. Br J Cancer 114(12):1305–1312. doi:10.1038/bjc.2016.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. De Luca A, Fiorillo M, Peiris-Pages M, Ozsvari B, Smith DL, Sanchez-Alvarez R, Martinez-Outschoorn UE, Cappello AR, Pezzi V, Lisanti MP, Sotgia F (2015) Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget 6(17):14777–14795. doi:10.18632/oncotarget.4401

    Article  PubMed  PubMed Central  Google Scholar 

  116. Xie Q, Wu Q, Horbinski CM, Flavahan WA, Yang K, Zhou W, Dombrowski SM, Huang Z, Fang X, Shi Y, Ferguson AN, Kashatus DF, Bao S, Rich JN (2015) Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci 18(4):501–510. doi:10.1038/nn.3960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Prieto J, Leon M, Ponsoda X, Sendra R, Bort R, Ferrer-Lorente R, Raya A, Lopez-Garcia C, Torres J (2016) Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat Commun 7:11124. doi:10.1038/ncomms11124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760. doi:10.1038/nature05236

    Article  CAS  PubMed  Google Scholar 

  119. Eramo A, Ricci-Vitiani L, Zeuner A, Pallini R, Lotti F, Sette G, Pilozzi E, Larocca LM, Peschle C, De Maria R (2006) Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 13(7):1238–1241. doi:10.1038/sj.cdd.4401872

    Article  CAS  PubMed  Google Scholar 

  120. Delbridge AR, Strasser A (2015) The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ 22(7):1071–1080. doi:10.1038/cdd.2015.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Delbridge AR, Grabow S, Strasser A, Vaux DL (2016) Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nature reviews Cancer 16(2):99–109. doi:10.1038/nrc.2015.17

    Article  CAS  PubMed  Google Scholar 

  122. Luna-Vargas MP, Chipuk JE (2016) Physiological and Pharmacological Control of BAK, BAX, and Beyond. Trends Cell Biol. doi:10.1016/j.tcb.2016.07.002

    PubMed  Google Scholar 

  123. Elkholi R, Renault TT, Serasinghe MN, Chipuk JE (2014) Putting the pieces together: How is the mitochondrial pathway of apoptosis regulated in cancer and chemotherapy? Cancer Metabol 2:16. doi:10.1186/2049-3002-2-16

    Article  Google Scholar 

  124. Anvekar RA, Asciolla JJ, Missert DJ, Chipuk JE (2011) Born to be alive: a role for the BCL-2 family in melanoma tumor cell survival, apoptosis, and treatment. Front Oncol 1 (34). doi:10.3389/fonc.2011.00034

  125. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37(3):299–310. doi:10.1016/j.molcel.2010.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mancini M, Anderson BO, Caldwell E, Sedghinasab M, Paty PB, Hockenbery DM (1997) Mitochondrial proliferation and paradoxical membrane depolarization during terminal differentiation and apoptosis in a human colon carcinoma cell line. J Cell Biol 138(2):449–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pinton P, Ferrari D, Rapizzi E, Di Virgilio F, Pozzan T, Rizzuto R (2001) The Ca2 + concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J 20(11):2690–2701. doi:10.1093/emboj/20.11.2690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1(4):515–525

    Article  CAS  PubMed  Google Scholar 

  129. Karbowski M, Norris KL, Cleland MM, Jeong SY, Youle RJ (2006) Role of Bax and Bak in mitochondrial morphogenesis. Nature 443(7112):658–662. doi:10.1038/nature05111

    Article  CAS  PubMed  Google Scholar 

  130. Sugioka R, Shimizu S, Tsujimoto Y (2004) Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J Biol Chem 279(50):52726–52734. doi:10.1074/jbc.M408910200

    Article  CAS  PubMed  Google Scholar 

  131. Neuspiel M, Zunino R, Gangaraju S, Rippstein P, McBride H (2005) Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization. J Biol Chem 280(26):25060–25070. doi:10.1074/jbc.M501599200

    Article  CAS  PubMed  Google Scholar 

  132. Chipuk JE, McStay GP, Bharti A, Kuwana T, Clarke CJ, Siskind LJ, Obeid LM, Green DR (2012) Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 148(5):988–1000. doi:10.1016/j.cell.2012.01.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lee H, Rotolo JA, Mesicek J, Penate-Medina T, Rimner A, Liao WC, Yin X, Ragupathi G, Ehleiter D, Gulbins E, Zhai D, Reed JC, Haimovitz-Friedman A, Fuks Z, Kolesnick R (2011) Mitochondrial ceramide-rich macrodomains functionalize Bax upon irradiation. PloS one 6(6):e19783. doi:10.1371/journal.pone.0019783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Montessuit S, Somasekharan SP, Terrones O, Lucken-Ardjomande S, Herzig S, Schwarzenbacher R, Manstein DJ, Bossy-Wetzel E, Basanez G, Meda P, Martinou JC (2010) Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell 142(6):889–901. doi:10.1016/j.cell.2010.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dumitru R, Gama V, Fagan BM, Bower JJ, Swahari V, Pevny LH, Deshmukh M (2012) Human embryonic stem cells have constitutively active Bax at the Golgi and are primed to undergo rapid apoptosis. Mol Cell 46(5):573–583. doi:10.1016/j.molcel.2012.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Edlich F, Banerjee S, Suzuki M, Cleland MM, Arnoult D, Wang C, Neutzner A, Tjandra N, Youle RJ (2011) Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell 145(1):104–116. doi:10.1016/j.cell.2011.02.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Renault TT, Floros KV, Elkholi R, Corrigan KA, Kushnareva Y, Wieder SY, Lindtner C, Serasinghe MN, Asciolla JJ, Buettner C, Newmeyer DD, Chipuk JE (2015) Mitochondrial shape governs BAX-induced membrane permeabilization and apoptosis. Mol Cell 57(1):69–82. doi:10.1016/j.molcel.2014.10.028

    Article  CAS  PubMed  Google Scholar 

  138. Weinberg SE, Chandel NS (2015) Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol 11(1):9–15. doi:10.1038/nchembio.1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang D, Wang J, Bonamy GM, Meeusen S, Brusch RG, Turk C, Yang P, Schultz PG (2012) A small molecule promotes mitochondrial fusion in mammalian cells. Angew Chem 51(37):9302–9305. doi:10.1002/anie.201204589

    Article  CAS  Google Scholar 

  140. Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T, Kurth MJ, Shaw JT, Hinshaw JE, Green DR, Nunnari J (2008) Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 14(2):193–204. doi:10.1016/j.devcel.2007.11.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Qi X, Qvit N, Su YC, Mochly-Rosen D (2013) A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J Cell Sci 126(Pt 3):789–802. doi:10.1242/jcs.114439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rosdah AA, J KH, Delbridge LM, Dusting GJ, Lim SY (2016) Mitochondrial fission—a drug target for cytoprotection or cytodestruction? Pharmacol Res Perspect 4 (3):e00235. doi:10.1002/prp2.235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Zhan L, Cao H, Wang G, Lyu Y, Sun X, An J, Wu Z, Huang Q, Liu B, Xing J (2016) Drp1-mediated mitochondrial fission promotes cell proliferation through crosstalk of p53 and NF-kappaB pathways in hepatocellular carcinoma. Oncotarget. doi:10.18632/oncotarget.11339

    Google Scholar 

  144. Lennon FE, Cianci GC, Kanteti R, Riehm JJ, Arif Q, Poroyko VA, Lupovitch E, Vigneswaran W, Husain A, Chen P, Liao JK, Sattler M, Kindler HL, Salgia R (2016) Unique fractal evaluation and therapeutic implications of mitochondrial morphology in malignant mesothelioma. Sci Rep 6:24578. doi:10.1038/srep24578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Qian W, Wang J, Roginskaya V, McDermott LA, Edwards RP, Stolz DB, Llambi F, Green DR, Van Houten B (2014) Novel combination of mitochondrial division inhibitor 1 (mdivi-1) and platinum agents produces synergistic pro-apoptotic effect in drug resistant tumor cells. Oncotarget 5(12):4180–4194. doi:10.18632/oncotarget.1944

    Article  PubMed  PubMed Central  Google Scholar 

  146. Chiang YY, Chen SL, Hsiao YT, Huang CH, Lin TY, Chiang IP, Hsu WH, Chow KC (2009) Nuclear expression of dynamin-related protein 1 in lung adenocarcinomas. Mod Pathol Off J US Can Acad Pathol Inc 22(9):1139–1150. doi:10.1038/modpathol.2009.83

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by: NIH Grants CA157740 (J. E. C.) and CA206005 (J. E. C.); the JJR Foundation, the William A. Spivak Fund, the Fridolin Charitable Trust, an American Cancer Society Research Scholar Award, a Leukemia and Lymphoma Society Career Development Award, and an Irma T. Hirschl/Monique Weill-Caulier Trust Research Award. This work was also supported in part by two research Grants (5FY1174 and 1FY13416) from the March of Dimes Foundation, and the Developmental Research Pilot Project Program within the Department of Oncological Sciences at the Icahn School of Medicine at Mount Sinai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry Edward Chipuk.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trotta, A.P., Chipuk, J.E. Mitochondrial dynamics as regulators of cancer biology. Cell. Mol. Life Sci. 74, 1999–2017 (2017). https://doi.org/10.1007/s00018-016-2451-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2451-3

Keywords

Navigation