Skip to main content

Advertisement

Log in

The cellular autophagy/apoptosis checkpoint during inflammation

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cell death is a major determinant of inflammatory disease severity. Whether cells live or die during inflammation largely depends on the relative success of the pro-survival process of autophagy versus the pro-death process of apoptosis. These processes interact and influence each other during inflammation and there is a checkpoint at which cells irrevocably commit to either one pathway or another. This review will discuss the concept of the autophagy/apoptosis checkpoint and its importance during inflammation, the mechanisms of inflammation leading up to the checkpoint, and how the checkpoint is regulated. Understanding these concepts is important since manipulation of the autophagy/apoptosis checkpoint represents a novel opportunity for treatment of inflammatory diseases caused by too much or too little cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

PAMPs:

Pathogen-associated molecular pattern molecules

LPS:

Lipopolysaccharide

TNF-α:

Tumor necrosis factor alpha

IL-1:

Interleukin-1

IFN-γ:

Interferon-gamma

DAMPs:

Damage-associated molecular pattern molecules

HMGB1:

High mobility group box-1

ATP:

Adenosine triphosphate

FasL/CD95L:

Fas ligand

TRAIL/Apo2L:

TNF-related apoptosis-inducing ligand

TL1A:

TNF-like ligand 1A

TLR:

Toll-like receptors

NOD:

Nucleotide-oligomerization domain

NLR:

NOD-like receptors

AIM2:

Absent in melanoma-2

ALRs:

AIM2-like receptors

CLR:

C-type lectin receptors

RIG-1:

Retinoic acid-inducible gene-I

RLR:

RIG-I-like receptors

TIR:

Toll/interleukin-1 receptor

MyD88:

Myeloid differentiation primary-response protein 88

MAPKs:

Mitogen-activated protein kinases

NF-κB:

Nuclear factor-kappa B

TRIF/TICAM1:

TIR-domain-containing adaptor protein inducing IFN-β

MDA5:

Melanoma differentiation-associated gene 5

LGP2:

Laboratory of genetics and physiology 2

DD:

Death domain

TRADD:

TNF-receptor-associated death domain

FADD:

Fas-associated DD

SOCS1:

Suppressor of cytokine signaling-1

ER:

Endoplasmic reticulum

PDI:

Protein disulfide isomerase

UPR:

Unfolded protein response

GRP78/BiP/HSPA5:

Glucose-regulated protein 78

PERK:

PKR-like ER kinase

IRE1:

Inositol requiring enzyme 1

ATF6:

Activation transcription factor 6

ERAD:

ER-associated degradation

ROS:

Reactive oxygen species

Nrf2:

NF-E2-related factor 2

TNFAIP3/A20:

Tumor necrosis factor, alpha-induced protein 3

mTOR:

Mammalian target of rapamycin

CoA:

Coenzyme A

S1P:

Sphingosine-1-phosphate

PE:

Phosphatidylethanolamine

CaMKK-β:

Calmodulin-dependent kinase kinase beta

AMPK:

AMP kinase

PCD:

Programmed cell death

TRAF2:

TNF-receptor-associated factor 2

cIAP1 or cIAP2:

Cellular inhibitors of apoptosis

LUBAC:

Linear ubiquitin chain assembly complex

TAK1:

TGF-activated kinase 1

TAB:

TAK1-binding protein

cFLIP:

Cellular FLICE-like inhibitory protein

MLKL:

Mixed lineage kinase domain-like

DISC:

Death-inducing signaling complex

MOMP:

Mitochondrial outer membrane permeabilization

Apaf-1:

Apoptosis protease activating factor-1

BH3:

Bcl-2-homology 3

Smac/DIABLO:

Second mitochondria-derived activator of caspase/direct IAP-binding protein with low PI

HtrA2/OMI:

Serine protease high-temperature requirement protein A2

IAPs:

Inhibitor of apoptosis proteins

UVRAG:

UV irradiation resistance-associated gene

DAPK:

Death-associated protein kinase

DRP:

DAPK-related proteins kinase

References

  1. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42. doi:10.1016/j.cell.2007.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. doi:10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335. doi:10.1038/nature09782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741. doi:10.1016/j.cell.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  5. Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13:722–737. doi:10.1038/nri3532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boyle KB, Randow F (2013) The role of “eat-me” signals and autophagy cargo receptors in innate immunity. Curr Opin Microbiol. doi:10.1016/j.mib.2013.03.010

    PubMed Central  Google Scholar 

  7. Sanjuan MA, Dillon CP, Tait SWG et al (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450:1253–1257. doi:10.1038/nature06421

    Article  CAS  PubMed  Google Scholar 

  8. Lee HK, Lund JM, Ramanathan B et al (2007) Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315:1398–1401. doi:10.1126/science.1136880

    Article  CAS  PubMed  Google Scholar 

  9. Schmid D, Pypaert M, Münz C (2007) Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26:79–92. doi:10.1016/j.immuni.2006.10.018

    Article  CAS  PubMed  Google Scholar 

  10. Mintern JD, Macri C, Chin WJ et al (2015) Differential use of autophagy by primary dendritic cells specialized in cross-presentation. Autophagy 11:906–917. doi:10.1080/15548627.2015.1045178

    Article  PubMed  PubMed Central  Google Scholar 

  11. Deretic V, Kimura T, Timmins G et al (2015) Immunologic manifestations of autophagy. J Clin Invest 125:75–84. doi:10.1172/JCI73945

    Article  PubMed  PubMed Central  Google Scholar 

  12. White E (2015) The role for autophagy in cancer. J Clin Invest 125:42–46. doi:10.1172/JCI73941

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kenific CM, Debnath J (2015) Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol 25:37–45. doi:10.1016/j.tcb.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  14. Dong X, Levine B (2013) Autophagy and viruses: adversaries or allies? J Innate Immun 5:480–493. doi:10.1159/000346388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deretic V, Singh S, Master S et al (2006) Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell Microbiol 8:719–727. doi:10.1111/j.1462-5822.2006.00705.x

    Article  CAS  PubMed  Google Scholar 

  16. Nogueira CV, Lindsten T, Jamieson AM et al (2009) Rapid pathogen-induced apoptosis: a mechanism used by dendritic cells to limit intracellular replication of Legionella pneumophila. PLoS Pathog 5:e1000478. doi:10.1371/journal.ppat.1000478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Singhera GK, Chan TS, Cheng JY et al (2006) Apoptosis of viral-infected airway epithelial cells limit viral production and is altered by corticosteroid exposure. Respir Res 7:78. doi:10.1186/1465-9921-7-78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chaudhuri AR, Jeor SS, Maciejewski JP (1999) Apoptosis induced by human cytomegalovirus infection can be enhanced by cytokines to limit the spread of virus. Exp Hematol 27:1194–1203. doi:10.1016/S0301-472X(99)00044-2

    Article  CAS  PubMed  Google Scholar 

  19. Marriott HM, Bingle CD, Read RC et al (2005) Dynamic changes in Mcl-1 expression regulate macrophage viability or commitment to apoptosis during bacterial clearance. J Clin Invest 115:359–368. doi:10.1172/JCI21766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grassmé H, Kirschnek S, Riethmueller J et al (2000) CD95/CD95 ligand interactions on epithelial cells in host defense to Pseudomonas aeruginosa. Science 290:527–530

    Article  PubMed  Google Scholar 

  21. Flannagan RS, Cosío G, Grinstein S (2009) Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 7:355–366. doi:10.1038/nrmicro2128

    Article  CAS  PubMed  Google Scholar 

  22. Wu Y-S, Chen S-N (2014) Apoptotic cell: linkage of inflammation and wound healing. Front Pharmacol 5:1. doi:10.3389/fphar.2014.00001

    PubMed  PubMed Central  Google Scholar 

  23. Kanaly ST, Nashleanas M, Hondowicz B, Scott P (1999) TNF receptor p55 is required for elimination of inflammatory cells following control of intracellular pathogens. J Immunol 163:3883–3889

    CAS  PubMed  Google Scholar 

  24. Beattie L, d’El-Rei Hermida M, Moore JWJ et al (2013) A transcriptomic network identified in uninfected macrophages responding to inflammation controls intracellular pathogen survival. Cell Host Microbe 14:357–368. doi:10.1016/j.chom.2013.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vereecke L, Beyaert R, van Loo G (2011) Enterocyte death and intestinal barrier maintenance in homeostasis and disease. Trends Mol Med 17:584–593. doi:10.1016/j.molmed.2011.05.011

    Article  CAS  PubMed  Google Scholar 

  26. Bantel H, Schulze-Osthoff K (2003) Apoptosis in hepatitis C virus infection. Cell Death Differ 10(Suppl 1):S48–S58. doi:10.1038/sj.cdd.4401119

    Article  CAS  PubMed  Google Scholar 

  27. Rangel SM, Diaz MH, Knoten CA et al (2015) The role of ExoS in dissemination of Pseudomonas aeruginosa during Pneumonia. PLoS Pathog 11:e1004945. doi:10.1371/journal.ppat.1004945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Badley AD, Pilon AA, Landay A, Lynch DH (2000) Mechanisms of HIV-associated lymphocyte apoptosis. Blood 96:2951–2964

    CAS  PubMed  Google Scholar 

  29. Selliah N, Finkel TH (2001) Biochemical mechanisms of HIV induced T cell apoptosis. Cell Death Differ 8:127–136. doi:10.1038/sj.cdd.4400822

    Article  CAS  PubMed  Google Scholar 

  30. Rodríguez-Grille J, Busch LK, Martínez-Costas J, Benavente J (2014) Avian reovirus-triggered apoptosis enhances both virus spread and the processing of the viral nonstructural muNS protein. Virology 462–463:49–59. doi:10.1016/j.virol.2014.04.039

    Article  PubMed  CAS  Google Scholar 

  31. Chung KF, Adcock IM (2008) Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur Respir J 31:1334–1356. doi:10.1183/09031936.00018908

    Article  CAS  PubMed  Google Scholar 

  32. Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22:240–273. doi:10.1128/CMR.00046-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cha H-H, Hwang JR, Kim H-Y et al (2014) Autophagy induced by tumor necrosis factor α mediates intrinsic apoptosis in trophoblastic cells. Reprod Sci 21:612–622. doi:10.1177/1933719113508816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jia G, Cheng G, Gangahar DM, Agrawal DK (2006) Insulin-like growth factor-1 and TNF-alpha regulate autophagy through c-jun N-terminal kinase and Akt pathways in human atherosclerotic vascular smooth cells. Immunol Cell Biol 84:448–454. doi:10.1111/j.1440-1711.2006.01454.x

    Article  CAS  PubMed  Google Scholar 

  35. Keller CW, Fokken C, Turville SG et al (2010) TNF-induces macroautophagy and regulates MHC class II expression in human skeletal muscle cells. J Biol Chem 286:3970–3980. doi:10.1074/jbc.M110.159392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Shi C-S, Shenderov K, Huang N-N et al (2012) Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 13:255–263. doi:10.1038/ni.2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. de Luca A, Smeekens SP, Casagrande A et al (2014) IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc Natl Acad Sci USA 111:3526–3531. doi:10.1073/pnas.1322831111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Harris J, Hartman M, Roche C et al (2011) Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J Biol Chem 286:9587–9597. doi:10.1074/jbc.M110.202911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gutierrez MG, Master SS, Singh SB et al (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766. doi:10.1016/j.cell.2004.11.038

    Article  CAS  PubMed  Google Scholar 

  40. Berchtold LA, Prause M, Størling J, Mandrup-Poulsen T (2016) Cytokines and Pancreatic β-Cell Apoptosis. pp 99–158

  41. Newton K, Dixit VM (2012) Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 4:a006049. doi:10.1101/cshperspect.a006049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Walczak H (2013) Death receptor-ligand systems in cancer, cell death, and inflammation. Cold Spring Harb Perspect Biol 5:a008698. doi:10.1101/cshperspect.a008698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995. doi:10.1038/ni1112

    Article  CAS  PubMed  Google Scholar 

  44. Brubaker SW, Bonham KS, Zanoni I, Kagan JC (2015) Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 33:257–290. doi:10.1146/annurev-immunol-032414-112240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zarember KA, Godowski PJ (2002) Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 168:554–561

    Article  CAS  PubMed  Google Scholar 

  46. Broz P, Monack DM (2013) Newly described pattern recognition receptors team up against intracellular pathogens. Nat Rev Immunol 13:551–565. doi:10.1038/nri3479

    Article  CAS  PubMed  Google Scholar 

  47. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820. doi:10.1016/j.cell.2010.01.022

    Article  CAS  PubMed  Google Scholar 

  48. Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442:39–44. doi:10.1038/nature04946

    Article  CAS  PubMed  Google Scholar 

  49. Girardin SE, Boneca IG, Viala J et al (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278:8869–8872. doi:10.1074/jbc.C200651200

    Article  CAS  PubMed  Google Scholar 

  50. Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell 157:1013–1022. doi:10.1016/j.cell.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  51. Nunes T, de Souza HS (2013) Inflammasome in intestinal inflammation and cancer. Mediat Inflamm 2013:654963. doi:10.1155/2013/654963

    Article  CAS  Google Scholar 

  52. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13:397–411. doi:10.1038/nri3452

    Article  CAS  PubMed  Google Scholar 

  53. Lamkanfi M, Dixit VM (2012) Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol 28:137–161. doi:10.1146/annurev-cellbio-101011-155745

    Article  CAS  PubMed  Google Scholar 

  54. van Kooyk Y, Rabinovich GA (2008) Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 9:593–601. doi:10.1038/ni.f.203

    Article  PubMed  CAS  Google Scholar 

  55. Geijtenbeek TBH, Gringhuis SI (2009) Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 9:465–479. doi:10.1038/nri2569

    Article  CAS  PubMed  Google Scholar 

  56. Wilson NS, Dixit V, Ashkenazi A (2009) Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol 10:348–355. doi:10.1038/ni.1714

    Article  CAS  PubMed  Google Scholar 

  57. Lee H-J, Kim K-C, Han JA et al (2015) The early induction of suppressor of cytokine signaling 1 and the downregulation of toll-like receptors 7 and 9 induce tolerance in costimulated macrophages. Mol Cells 38:26–32. doi:10.14348/molcells.2015.2136

    Article  PubMed  CAS  Google Scholar 

  58. Matsuda N, Yamazaki H, Takano K et al (2008) Priming by lipopolysaccharide exaggerates acute lung injury and mortality in responses to peptidoglycan through up-regulation of Toll-like receptor-2 expression in mice. Biochem Pharmacol 75:1065–1075. doi:10.1016/j.bcp.2007.10.036

    Article  CAS  PubMed  Google Scholar 

  59. Wesemann DR, Benveniste EN (2003) STAT-1 alpha and IFN-gamma as modulators of TNF-alpha signaling in macrophages: regulation and functional implications of the TNF receptor 1:STAT-1 alpha complex. J Immunol 171:5313–5319

    Article  CAS  PubMed  Google Scholar 

  60. Harris J, De Haro SA, Master SS et al (2007) T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27:505–517. doi:10.1016/j.immuni.2007.07.022

    Article  CAS  PubMed  Google Scholar 

  61. Schönthal AH (2012) Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. Scientifica (Cairo) 2012:857516. doi:10.6064/2012/857516

    Google Scholar 

  62. Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115:2656–2664. doi:10.1172/JCI26373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jäger R, Bertrand MJM, Gorman AM et al (2012) The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biol Cell 104:259–270. doi:10.1111/boc.201100055

    Article  PubMed  CAS  Google Scholar 

  64. Rath E, Haller D (2011) Inflammation and cellular stress: a mechanistic link between immune-mediated and metabolically driven pathologies. Eur J Nutr 50:219–233. doi:10.1007/s00394-011-0197-0

    Article  CAS  PubMed  Google Scholar 

  65. He B (2006) Viruses, endoplasmic reticulum stress, and interferon responses. Cell Death Differ 13:393–403. doi:10.1038/sj.cdd.4401833

    Article  CAS  PubMed  Google Scholar 

  66. Martinon F, Chen X, Lee A-H, Glimcher LH (2010) TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 11:411–418. doi:10.1038/ni.1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Messlik A, Schmechel S, Kisling S et al (2009) Loss of Toll-like receptor 2 and 4 leads to differential induction of endoplasmic reticulum stress and proapoptotic responses in the intestinal epithelium under conditions of chronic inflammation. J Proteome Res 8:4406–4417. doi:10.1021/pr9000465

    Article  CAS  PubMed  Google Scholar 

  68. Woo CW, Cui D, Arellano J et al (2009) Adaptive suppression of the ATF4-CHOP branch of the unfolded protein response by toll-like receptor signalling. Nat Cell Biol 11:1473–1480. doi:10.1038/ncb1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Janssens S, Pulendran B, Lambrecht BN (2014) Emerging functions of the unfolded protein response in immunity. Nat Immunol 15:910–919. doi:10.1038/ni.2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Deegan S, Saveljeva S, Gorman AM, Samali A (2013) Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress. Cell Mol Life Sci 70:2425–2441. doi:10.1007/s00018-012-1173-4

    Article  CAS  PubMed  Google Scholar 

  71. Ogata M, Hino S, Saito A et al (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26:9220–9231. doi:10.1128/MCB.01453-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885. doi:10.1038/sj.embor.7400779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mittal M, Siddiqui MR, Tran K et al (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20:1126–1167. doi:10.1089/ars.2012.5149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455–462. doi:10.1038/nature07203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Adam-Vizi V, Chinopoulos C (2006) Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27:639–645. doi:10.1016/j.tips.2006.10.005

    Article  CAS  PubMed  Google Scholar 

  76. Zhang K (2010) Integration of ER stress, oxidative stress and the inflammatory response in health and disease. Int J Clin Exp Med 3:33–40

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Scherz-Shouval R, Elazar Z (2011) Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 36:30–38. doi:10.1016/j.tibs.2010.07.007

    Article  CAS  PubMed  Google Scholar 

  78. Zhang L, Wang K, Lei Y et al (2015) Redox signaling: potential arbitrator of autophagy and apoptosis in therapeutic response. Free Radic Biol Med 89:452–465. doi:10.1016/j.freeradbiomed.2015.08.030

    Article  CAS  PubMed  Google Scholar 

  79. Schauvliege R, Vanrobaeys J, Schotte P, Beyaert R (2002) Caspase-11 gene expression in response to lipopolysaccharide and interferon-gamma requires nuclear factor-kappa B and signal transducer and activator of transcription (STAT) 1. J Biol Chem 277:41624–41630. doi:10.1074/jbc.M207852200

    Article  CAS  PubMed  Google Scholar 

  80. Wang S, Miura M, Jung YK et al (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92:501–509

    Article  CAS  PubMed  Google Scholar 

  81. Fontana L Neuroendocrine factors in the regulation of inflammation: excessive adiposity and calorie restriction. Exp Gerontol 44:41–45. doi:10.1016/j.exger.2008.04.005

  82. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616. doi:10.1016/j.freeradbiomed.2010.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hitotsumatsu O, Ahmad R-C, Tavares R et al (2008) The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 28:381–390. doi:10.1016/j.immuni.2008.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Boone DL, Turer EE, Lee EG et al (2004) The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 5:1052–1060. doi:10.1038/ni1110

    Article  CAS  PubMed  Google Scholar 

  85. Lee EG, Boone DL, Chai S et al (2000) Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 289:2350–2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Russell RC, Yuan H-X, Guan K-L (2013) Autophagy regulation by nutrient signaling. Cell Res 24:42–57. doi:10.1038/cr.2013.166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Li Y, Li S, Qin X et al (2014) The pleiotropic roles of sphingolipid signaling in autophagy. Cell Death Dis 5:e1245. doi:10.1038/cddis.2014.215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Garcia-Ruiz C, Morales A, Fernández-Checa JC (2015) Glycosphingolipids and cell death: one aim, many ways. Apoptosis 20:607–620. doi:10.1007/s10495-015-1092-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Maceyka M, Spiegel S (2014) Sphingolipid metabolites in inflammatory disease. Nature 510:58–67. doi:10.1038/nature13475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee J, Yeganeh B, Ermini L, Post M (2015) Sphingolipids as cell fate regulators in lung development and disease. Apoptosis 20:740–757. doi:10.1007/s10495-015-1112-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124–31. doi:10.1016/j.ceb.2009.11.014

    Article  CAS  PubMed  Google Scholar 

  92. Tanida I (2011) Autophagy basics. Microbiol Immunol 55:1–11. doi:10.1111/j.1348-0421.2010.00271.x

    Article  CAS  PubMed  Google Scholar 

  93. Ravikumar B, Sarkar S, Davies JE et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435. doi:10.1152/physrev.00030.2009

    Article  CAS  PubMed  Google Scholar 

  94. Burman C, Ktistakis NT (2010) Autophagosome formation in mammalian cells. Semin Immunopathol 32:397–413. doi:10.1007/s00281-010-0222-z

    Article  CAS  PubMed  Google Scholar 

  95. Tanida I, Ueno T, Kominami E (2004) LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36:2503–2518. doi:10.1016/j.biocel.2004.05.009

    Article  CAS  PubMed  Google Scholar 

  96. Hemelaar J, Lelyveld VS, Kessler BM, Ploegh HL (2003) A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L. J Biol Chem 278:51841–51850. doi:10.1074/jbc.M308762200

    Article  CAS  PubMed  Google Scholar 

  97. Geng J, Klionsky DJ (2008) The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. “Protein modifications: beyond the usual suspects” review series. EMBO Rep 9:859–864. doi:10.1038/embor.2008.163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–32. doi:10.1146/annurev-cellbio-092910-154005

    Article  CAS  PubMed  Google Scholar 

  99. Kimura S, Noda T, Yoshimori T (2008) Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct 33:109–122

    Article  CAS  PubMed  Google Scholar 

  100. Eskelinen E-L, Saftig P (2009) Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta 1793:664–673. doi:10.1016/j.bbamcr.2008.07.014

    Article  CAS  PubMed  Google Scholar 

  101. Delgado MA, Elmaoued RA, Davis AS et al (2008) Toll-like receptors control autophagy. EMBO J 27:1110–1121. doi:10.1038/emboj.2008.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Anand PK, Tait SWG, Lamkanfi M et al (2011) TLR2 and RIP2 pathways mediate autophagy of Listeria monocytogenes via extracellular signal-regulated kinase (ERK) activation. J Biol Chem 286:42981–42991. doi:10.1074/jbc.M111.310599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shi C-S, Kehrl JH (2008) MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J Biol Chem 283:33175–33182. doi:10.1074/jbc.M804478200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xu Y, Jagannath C, Liu X-D et al (2007) Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27:135–144. doi:10.1016/j.immuni.2007.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shin D-M, Yuk J-M, Lee H-M et al (2010) Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell Microbiol 12:1648–1665. doi:10.1111/j.1462-5822.2010.01497.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Henault J, Martinez J, Riggs JM et al (2012) Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes. Immunity 37:986–997. doi:10.1016/j.immuni.2012.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shi C-S, Kehrl JH (2010) TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci Signal 3:ra42. doi:10.1126/scisignal.2000751

    PubMed  Google Scholar 

  108. Travassos LH, Carneiro LAM, Ramjeet M et al (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11:55–62. doi:10.1038/ni.1823

    Article  CAS  PubMed  Google Scholar 

  109. Cooney R, Baker J, Brain O et al (2010) NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 16:90–97. doi:10.1038/nm.2069

    Article  CAS  PubMed  Google Scholar 

  110. Wang L-J, Huang H-Y, Huang M-P et al (2014) The microtubule-associated protein EB1 links AIM2 inflammasomes with autophagy-dependent secretion. J Biol Chem 289:29322–29333. doi:10.1074/jbc.M114.559153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lei Y, Wen H, Yu Y et al (2012) The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity 36:933–946. doi:10.1016/j.immuni.2012.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pilli M, Arko-Mensah J, Ponpuak M et al (2012) TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37:223–234. doi:10.1016/j.immuni.2012.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Harris J (2013) Autophagy and IL-1 Family Cytokines. Front Immunol 4:83. doi:10.3389/fimmu.2013.00083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Rashid H-O, Yadav RK, Kim H-R, Chae H-J (2015) ER stress: autophagy induction, inhibition and selection. Autophagy 11:1956–1977. doi:10.1080/15548627.2015.1091141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Høyer-Hansen M, Jäättelä M (2007) Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 14:1576–1582. doi:10.1038/sj.cdd.4402200

    Article  PubMed  CAS  Google Scholar 

  116. Høyer-Hansen M, Bastholm L, Szyniarowski P et al (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-β, and Bcl-2. Mol Cell 25:193–205. doi:10.1016/j.molcel.2006.12.009

    Article  PubMed  CAS  Google Scholar 

  117. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Silva MT (2010) Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett 584:4491–4499. doi:10.1016/j.febslet.2010.10.046

    Article  CAS  PubMed  Google Scholar 

  119. Haslett C (1999) Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am J Respir Crit Care Med 160:S5–S11. doi:10.1164/ajrccm.160.supplement_1.4

    Article  CAS  PubMed  Google Scholar 

  120. Lamkanfi M, Dixit VM (2010) Manipulation of host cell death pathways during microbial infections. Cell Host Microbe 8:44–54. doi:10.1016/j.chom.2010.06.007

    Article  CAS  PubMed  Google Scholar 

  121. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517:311–320. doi:10.1038/nature14191

    Article  CAS  PubMed  Google Scholar 

  122. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190

    Article  CAS  PubMed  Google Scholar 

  123. Han J, Zhong C-Q, Zhang D-W (2011) Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol 12:1143–1149. doi:10.1038/ni.2159

    Article  CAS  PubMed  Google Scholar 

  124. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  CAS  PubMed  Google Scholar 

  125. Ow Y-LP, Green DR, Hao Z, Mak TW (2008) Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol 9:532–542. doi:10.1038/nrm2434

    Article  CAS  PubMed  Google Scholar 

  126. Saelens X, Festjens N, Vande Walle L et al (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23:2861–2874. doi:10.1038/sj.onc.1207523

    Article  CAS  PubMed  Google Scholar 

  127. Duprez L, Wirawan E, Vanden Berghe T, Vandenabeele P (2009) Major cell death pathways at a glance. Microbes Infect 11:1050–1062. doi:10.1016/j.micinf.2009.08.013

    Article  CAS  PubMed  Google Scholar 

  128. Łopatniuk P, Witkowski JM (2011) Conventional calpains and programmed cell death. Acta Biochim Pol 58:287–296

    PubMed  Google Scholar 

  129. Gafni J, Cong X, Chen SF et al (2009) Calpain-1 cleaves and activates caspase-7. J Biol Chem 284:25441–25449. doi:10.1074/jbc.M109.038174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Martinez JA, Zhang Z, Svetlov SI et al (2010) Calpain and caspase processing of caspase-12 contribute to the ER stress-induced cell death pathway in differentiated PC12 cells. Apoptosis 15:1480–1493. doi:10.1007/s10495-010-0526-4

    Article  CAS  PubMed  Google Scholar 

  131. Vaisid T, Barnoy S, Kosower NS (2009) Calpain activates caspase-8 in neuron-like differentiated PC12 cells via the amyloid-beta-peptide and CD95 pathways. Int J Biochem Cell Biol 41:2450–2458. doi:10.1016/j.biocel.2009.07.010

    Article  CAS  PubMed  Google Scholar 

  132. Tan Y, Wu C, De Veyra T, Greer PA (2006) Ubiquitous calpains promote both apoptosis and survival signals in response to different cell death stimuli. J Biol Chem 281:17689–17698. doi:10.1074/jbc.M601978200

    Article  CAS  PubMed  Google Scholar 

  133. Weber H, Müller L, Jonas L et al (2013) Calpain mediates caspase-dependent apoptosis initiated by hydrogen peroxide in pancreatic acinar AR42J cells. Free Radic Res 47:432–446. doi:10.3109/10715762.2013.785633

    Article  CAS  PubMed  Google Scholar 

  134. Shi M, Zhang T, Sun L et al (2013) Calpain, Atg5 and Bak play important roles in the crosstalk between apoptosis and autophagy induced by influx of extracellular calcium. Apoptosis 18:435–451. doi:10.1007/s10495-012-0786-2

    Article  CAS  PubMed  Google Scholar 

  135. Wood DE, Thomas A, Devi LA et al (1998) Bax cleavage is mediated by calpain during drug-induced apoptosis. Oncogene 17:1069–1078. doi:10.1038/sj.onc.1202034

    Article  CAS  PubMed  Google Scholar 

  136. Gao G, Dou QP (2000) N-terminal cleavage of bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes bcl-2-independent cytochrome C release and apoptotic cell death. J Cell Biochem 80:53–72

    Article  CAS  PubMed  Google Scholar 

  137. Chen M (2001) Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J Biol Chem 276:30724–30728. doi:10.1074/jbc.M103701200

    Article  CAS  PubMed  Google Scholar 

  138. Smith MA, Schnellmann RG (2012) Calpains, mitochondria, and apoptosis. Cardiovasc Res 96:32–37. doi:10.1093/cvr/cvs163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13:184–190. doi:10.1038/ncb0311-184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010. doi:10.1038/nrm2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Shen S, Kepp O, Kroemer G (2012) The end of autophagic cell death? Autophagy 8:1–3. doi:10.4161/auto.8.1.16618

    Article  PubMed  CAS  Google Scholar 

  142. Xue L, Fletcher GC, Tolkovsky AM (2001) Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis. Curr Biol 11:361–365

    Article  CAS  PubMed  Google Scholar 

  143. Zhang Y, Qi H, Taylor R et al The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains. Autophagy 3:337–346

  144. Mitter SK, Song C, Qi X et al (2014) Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD. Autophagy 10:1989–2005. doi:10.4161/auto.36184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Paul S, Kashyap AK, Jia W et al (2012) Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-κB. Immunity 36:947–958. doi:10.1016/j.immuni.2012.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Shibata Y, Oyama M, Kozuka-Hata H et al (2012) p47 negatively regulates IKK activation by inducing the lysosomal degradation of polyubiquitinated NEMO. Nat Commun 3:1061. doi:10.1038/ncomms2068

    Article  PubMed  CAS  Google Scholar 

  147. Kimura T, Jain A, Choi SW et al (2015) TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J Cell Biol. doi:10.1083/jcb.201503023

    Google Scholar 

  148. Hou W, Han J, Lu C et al (2014) Autophagic degradation of active caspase-8. Autophagy 6:891–900. doi:10.4161/auto.6.7.13038

    Article  CAS  Google Scholar 

  149. Chen S, Zhou L, Zhang Y et al (2014) Targeting SQSTM1/p62 induces cargo loading failure and converts autophagy to apoptosis via NBK/Bik. Mol Cell Biol 34:3435–3449. doi:10.1128/MCB.01383-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Young MM, Takahashi Y, Khan O et al (2012) Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J Biol Chem 287:12455–12468. doi:10.1074/jbc.M111.309104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Laussmann MA, Passante E, Düssmann H et al (2011) Proteasome inhibition can induce an autophagy-dependent apical activation of caspase-8. Cell Death Differ 18:1584–1597. doi:10.1038/cdd.2011.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Deegan S, Saveljeva S, Logue SE et al (2014) Deficiency in the mitochondrial apoptotic pathway reveals the toxic potential of autophagy under ER stress conditions. Autophagy 10:1921–1936. doi:10.4161/15548627.2014.981790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Rubinstein AD, Eisenstein M, Ber Y et al (2011) The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol Cell 44:698–709. doi:10.1016/j.molcel.2011.10.014

    Article  CAS  PubMed  Google Scholar 

  154. Yu L, Alva A, Su H et al (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304:1500–1502. doi:10.1126/science.1096645

    Article  CAS  PubMed  Google Scholar 

  155. Yin X, Cao L, Kang R et al (2011) UV irradiation resistance-associated gene suppresses apoptosis by interfering with BAX activation. EMBO Rep 12:727–734. doi:10.1038/embor.2011.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Han J, Hou W, Goldstein LA et al (2014) A Complex between Atg7 and Caspase-9: a novel mechanism of cross-regulation between autophagy and apoptosis. J Biol Chem 289:6485–6497. doi:10.1074/jbc.M113.536854

    Article  CAS  PubMed  Google Scholar 

  157. Jeong H-S, Choi HY, Lee E-R et al (2011) Involvement of caspase-9 in autophagy-mediated cell survival pathway. Biochim Biophys Acta 1813:80–90. doi:10.1016/j.bbamcr.2010.09.016

    Article  CAS  PubMed  Google Scholar 

  158. Demarchi F, Schneider C (2007) The calpain system as a modulator of stress/damage response. Cell Cycle 6:136–138

    Article  CAS  PubMed  Google Scholar 

  159. Norman JM, Cohen GM, Bampton ETW (2010) The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy 6:1042–1056. doi:10.4161/auto.6.8.13337

    Article  CAS  PubMed  Google Scholar 

  160. Yousefi S, Perozzo R, Schmid I et al (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8:1124–1132. doi:10.1038/ncb1482

    Article  CAS  PubMed  Google Scholar 

  161. Wirawan E, Vande Walle L, Kersse K et al (2010) Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis 1:e18. doi:10.1038/cddis.2009.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. You M, Savaraj N, Kuo MT et al (2012) TRAIL induces autophagic protein cleavage through caspase activation in melanoma cell lines under arginine deprivation. Mol Cell Biochem 374:181–190. doi:10.1007/s11010-012-1518-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Rohn TT, Wirawan E, Brown RJ et al (2011) Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer’s disease brain. Neurobiol Dis 43:68–78. doi:10.1016/j.nbd.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  164. Russo R, Berliocchi L, Adornetto A et al (2011) Calpain-mediated cleavage of Beclin-1 and autophagy deregulation following retinal ischemic injury in vivo. Cell Death Dis 2:e144. doi:10.1038/cddis.2011.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Pagliarini V, Wirawan E, Romagnoli A et al (2012) Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death Differ 19:1495–1504. doi:10.1038/cdd.2012.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Betin VMS, Lane JD (2009) Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J Cell Sci 122:2554–2566. doi:10.1242/jcs.046250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Betin VMS, MacVicar TDB, Parsons SF et al (2012) A cryptic mitochondrial targeting motif in Atg4D links caspase cleavage with mitochondrial import and oxidative stress. Autophagy 8:664–676. doi:10.4161/auto.19227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Siddiqui MA, Mukherjee S, Manivannan P, Malathi K (2015) RNase L cleavage products promote switch from autophagy to apoptosis by caspase-mediated cleavage of Beclin-1. Int J Mol Sci 16:17611–17636. doi:10.3390/ijms160817611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Luo S, Rubinsztein DC (2010) Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ 17:268–277. doi:10.1038/cdd.2009.121

    Article  CAS  PubMed  Google Scholar 

  170. Ciechomska IA, Goemans CG, Tolkovsky AM (2009) Why doesn’t Beclin 1, a BH3-only protein, suppress the anti-apoptotic function of Bcl-2? Autophagy 5:880–881

    Article  CAS  PubMed  Google Scholar 

  171. Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18:571–580. doi:10.1038/cdd.2010.191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. R Safa A (2013) Roles of c-FLIP in apoptosis, necroptosis, and autophagy. J Carcinog Mutagen. doi:10.4172/2157-2518.S6-003

    Google Scholar 

  173. Gozuacik D, Bialik S, Raveh T et al (2008) DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death Differ 15:1875–1886. doi:10.1038/cdd.2008.121

    Article  CAS  PubMed  Google Scholar 

  174. Inbal B, Bialik S, Sabanay I et al (2002) DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 157:455–468. doi:10.1083/jcb.200109094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Levin-Salomon V, Bialik S, Kimchi A (2014) DAP-kinase and autophagy. Apoptosis 19:346–356. doi:10.1007/s10495-013-0918-3

    Article  CAS  PubMed  Google Scholar 

  176. Luo S, Rubinsztein DC (2007) Atg5 and Bcl-2 provide novel insights into the interplay between apoptosis and autophagy. Cell Death Differ 14:1247–1250. doi:10.1038/sj.cdd.4402149

    Article  CAS  PubMed  Google Scholar 

  177. Maiuri MC, Le Toumelin G, Criollo A et al (2007) Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26:2527–2539. doi:10.1038/sj.emboj.7601689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Klionsky DJ, Abdalla FC, Abeliovich H et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Erlich S, Mizrachy L, Segev O et al Differential interactions between Beclin 1 and Bcl-2 family members. Autophagy 3:561–568

  180. Wei Y, Sinha S, Levine B (2008) Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy 4:949–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zalckvar E, Berissi H, Mizrachy L et al (2009) DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 10:285–292. doi:10.1038/embor.2008.246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zalckvar E, Berissi H, Eisenstein M, Kimchi A (2009) Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 5:720–722

    Article  CAS  PubMed  Google Scholar 

  183. Tang D, Kang R, Livesey KM et al (2010) Endogenous HMGB1 regulates autophagy. J Cell Biol 190:881–892. doi:10.1083/jcb.200911078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Pyo J-O, Jang M-H, Kwon Y-K et al (2005) Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 280:20722–20729. doi:10.1074/jbc.M413934200

    Article  CAS  PubMed  Google Scholar 

  185. Harris HE, Andersson U, Pisetsky DS (2012) HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat Rev Rheumatol 8:195–202. doi:10.1038/nrrheum.2011.222

    Article  CAS  PubMed  Google Scholar 

  186. Zhu X, Messer JS, Wang Y et al (2015) Cytosolic HMGB1 controls the cellular autophagy/apoptosis checkpoint during inflammation. J Clin Invest 125:1098–1110. doi:10.1172/JCI76344

    Article  PubMed  PubMed Central  Google Scholar 

  187. Lin HH, Lin S-M, Chung Y et al (2014) Dynamic involvement of ATG5 in cellular stress responses. Cell Death Dis 5:e1478. doi:10.1038/cddis.2014.428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Lépine S, Allegood JC, Edmonds Y et al (2011) Autophagy induced by deficiency of sphingosine-1-phosphate phosphohydrolase 1 is switched to apoptosis by calpain-mediated autophagy-related gene 5 (Atg5) cleavage. J Biol Chem 286:44380–44390. doi:10.1074/jbc.M111.257519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Shimizu S, Kanaseki T, Mizushima N et al (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6:1221–1228. doi:10.1038/ncb1192

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by Crohn’s and Colitis Foundation of America and National Institute of Diabetes and Digestive and Kidney Diseases (Grant Nos. http://dx.doi.org/10.13039/100001063, P30 DK42086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeannette S. Messer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messer, J.S. The cellular autophagy/apoptosis checkpoint during inflammation. Cell. Mol. Life Sci. 74, 1281–1296 (2017). https://doi.org/10.1007/s00018-016-2403-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2403-y

Keywords

Navigation