Skip to main content
Log in

Development of the cardiac pacemaker

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The sinoatrial node (SAN) is the dominant pacemaker of the heart. Abnormalities in SAN formation and function can cause sinus arrhythmia, including sick sinus syndrome and sudden death. A better understanding of genes and signaling pathways that regulate SAN development and function is essential to develop more effective treatment to sinus arrhythmia, including biological pacemakers. In this review, we briefly summarize the key processes of SAN morphogenesis during development, and focus on the transcriptional network that drives SAN development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Keith A, Flack M (1907) The form and nature of the muscular connections between the primary divisions of the vertebrate heart. J Anat Physiol 41(Pt 3):172–189

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Dobrzynski H, Boyett MR, Anderson RH (2007) New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation 115(14):1921–1932

    Article  PubMed  Google Scholar 

  3. Monfredi O, Boyett MR (2015) Sick sinus syndrome and atrial fibrillation in older persons—a view from the sinoatrial nodal myocyte. J Mol Cell Cardiol 83:88–100

  4. Choudhury M, Boyett MR, Morris GM (2015) Biology of the sinus node and its disease. Arrhythm Electrophysiol Rev 4(1):28–34

    Article  PubMed  PubMed Central  Google Scholar 

  5. Froese A, Breher SS, Waldeyer C, Schindler RF, Nikolaev VO, Rinne S, Wischmeyer E, Schlueter J, Becher J, Simrick S et al (2012) Popeye domain containing proteins are essential for stress-mediated modulation of cardiac pacemaking in mice. J Clin Invest 122(3):1119–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schindler RF, Scotton C, French V, Ferlini A, Brand T (2016) The Popeye domain containing genes and their function in striated muscle. J Cardiovasc Dev Dis 3(2):22

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schindler RF, Scotton C, Zhang J, Passarelli C, Ortiz-Bonnin B, Simrick S, Schwerte T, Poon KL, Fang M, Rinne S et al (2016) POPDC1(S201F) causes muscular dystrophy and arrhythmia by affecting protein trafficking. J Clin Invest 126(1):239–253

    Article  PubMed  Google Scholar 

  8. Dobrzynski H, Anderson RH, Atkinson A, Borbas Z, D’Souza A, Fraser JF, Inada S, Logantha SJ, Monfredi O, Morris GM et al (2013) Structure, function and clinical relevance of the cardiac conduction system, including the atrioventricular ring and outflow tract tissues. Pharmacol Ther 139(2):260–288

    Article  CAS  PubMed  Google Scholar 

  9. Csepe TA, Kalyanasundaram A, Hansen BJ, Zhao J, Fedorov VV (2015) Fibrosis: a structural modulator of sinoatrial node physiology and dysfunction. Frontiers Physiol 6:37

  10. Fedorov VV, Glukhov AV, Chang R (2012) Conduction barriers and pathways of the sinoatrial pacemaker complex: their role in normal rhythm and atrial arrhythmias. Am J Physiol Heart Circ Physiol 302(9):H1773–H1783

    Article  CAS  PubMed  Google Scholar 

  11. Verheijck EE, van Kempen MJ, Veereschild M, Lurvink J, Jongsma HJ, Bouman LN (2001) Electrophysiological features of the mouse sinoatrial node in relation to connexin distribution. Cardiovasc Res 52(1):40–50

    Article  CAS  PubMed  Google Scholar 

  12. Monfredi O, Dobrzynski H, Mondal T, Boyett MR, Morris GM (2010) The anatomy and physiology of the sinoatrial node—a contemporary review. Pacing Clin Electrophysiol 33(11):1392–1406

    Article  PubMed  Google Scholar 

  13. Wiese C, Grieskamp T, Airik R, Mommersteeg MT, Gardiwal A, de Gier-de Vries C, Schuster-Gossler K, Moorman AF, Kispert A, Christoffels VM (2009) Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circ Res 104(3):388–397

  14. Ye W, Song Y, Huang Z, Zhang Y, Chen Y (2015) Genetic regulation of sinoatrial node development and pacemaker program in the venous pole. J Cardiovasc Dev Dis 2(4):282–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ye W, Wang J, Song Y, Yu D, Sun C, Liu C, Chen F, Zhang Y, Wang F, Harvey RP et al (2015) A common Shox2–Nk2–5 antagonistic mechanism primes the pacemaker cell fate in the pulmonary vein myocardium and sinoatrial node. Development 142(14):2521–2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sanchez-Quintana D, Cabrera JA, Farre J, Climent V, Anderson RH, Ho SY (2005) Sinus node revisited in the era of electroanatomical mapping and catheter ablation. Heart 91(2):189–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang X, Cui X (2015) The functions of atrial strands interdigitating with and penetrating into sinoatrial node: a theoretical study of the problem. PLoS One 10(3):e0118623

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu J, Dobrzynski H, Yanni J, Boyett MR, Lei M (2007) Organisation of the mouse sinoatrial node: structure and expression of HCN channels. Cardiovasc Res 73(4):729–738

    Article  CAS  PubMed  Google Scholar 

  19. Boyett MR, Honjo H, Kodama I (2000) The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res 47(4):658–687

    Article  CAS  PubMed  Google Scholar 

  20. Verheijck EE, Wessels A, van Ginneken AC, Bourier J, Markman MW, Vermeulen JL, de Bakker JM, Lamers WH, Opthof T, Bouman LN (1998) Distribution of atrial and nodal cells within the rabbit sinoatrial node: models of sinoatrial transition. Circulation 97(16):1623–1631

    Article  CAS  PubMed  Google Scholar 

  21. Evans SM, Yelon D, Conlon FL, Kirby ML (2010) Myocardial lineage development. Circ Res 107(12):1428–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dyer LA, Kirby ML (2009) The role of secondary heart field in cardiac development. Dev Biol 336(2):137–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kelly RG, Buckingham ME (2002) The anterior heart-forming field: voyage to the arterial pole of the heart. Trends Genet 18(4):210–216

    Article  CAS  PubMed  Google Scholar 

  24. Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5(6):877–889

    Article  CAS  PubMed  Google Scholar 

  25. Bressan M, Liu G, Mikawa T (2013) Early mesodermal cues assign avian cardiac pacemaker fate potential in a tertiary heart field. Science 340(6133):744–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liang X, Evans SM, Sun Y (2015) Insights into cardiac conduction system formation provided by HCN4 expression. Trends Cardiovasc Med 25(1):1–9

    Article  CAS  PubMed  Google Scholar 

  27. Liang X, Wang G, Lin L, Lowe J, Zhang Q, Bu L, Chen Y, Chen J, Sun Y, Evans SM (2013) HCN4 dynamically marks the first heart field and conduction system precursors. Circ Res 113(4):399–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Franco D, Christoffels VM, Campione M (2014) Homeobox transcription factor Pitx2: the rise of an asymmetry gene in cardiogenesis and arrhythmogenesis. Trends Cardiovasc Med 24(1):23–31

    Article  CAS  PubMed  Google Scholar 

  29. Yoshioka H, Meno C, Koshiba K, Sugihara M, Itoh H, Ishimaru Y, Inoue T, Ohuchi H, Semina EV, Murray JC et al (1998) Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Cell 94(3):299–305

    Article  CAS  PubMed  Google Scholar 

  30. Ammirabile G, Tessari A, Pignataro V, Szumska D, Sutera Sardo F, Benes Jr J, Balistreri M, Bhattacharya S, Sedmera D, Campione M (2012) Pitx2 confers left morphological, molecular, and functional identity to the sinus venosus myocardium. Cardiovasc Res 93(2):291–301

    Article  CAS  PubMed  Google Scholar 

  31. Mommersteeg MT, Dominguez JN, Wiese C, Norden J, de Gier-de Vries C, Burch JB, Kispert A, Brown NA, Moorman AF, Christoffels VM (2010) The sinus venosus progenitors separate and diversify from the first and second heart fields early in development. Cardiovasc Res 87(1):92–101

  32. Galli D, Dominguez JN, Zaffran S, Munk A, Brown NA, Buckingham ME (2008) Atrial myocardium derives from the posterior region of the second heart field, which acquires left–right identity as Pitx2c is expressed. Development 135(6):1157–1167

    Article  CAS  PubMed  Google Scholar 

  33. Hirota A, Fujii S, Kamino K (1979) Optical monitoring of spontaneous electrical activity of 8-somite embryonic chick heart. Jpn J Physiol 29(5):635–639

    Article  CAS  PubMed  Google Scholar 

  34. Kamino K, Hirota A, Fujii S (1981) Localization of pacemaking activity in early embryonic heart monitored using voltage-sensitive dye. Nature 290(5807):595–597

    Article  CAS  PubMed  Google Scholar 

  35. Van Mierop LH (1967) Location of pacemaker in chick embryo heart at the time of initiation of heartbeat. Am J Physiol 212(2):407–415

    PubMed  Google Scholar 

  36. Sakai T, Hirota A, Fujii S, Kamino K (1983) Flexibility of regional pacemaking priority in early embryonic heart monitored by simultaneous optical recording of action potentials from multiple sites. Jpn J Physiol 33(3):337–350

    Article  CAS  PubMed  Google Scholar 

  37. Hirota A, Kamino K, Komuro H, Sakai T, Yada T (1985) Early events in development of electrical activity and contraction in embryonic rat heart assessed by optical recording. J Physiol 369:209–227

  38. Yi T, Wong J, Feller E, Sink S, Taghli-Lamallem O, Wen J, Kim C, Fink M, Giles W, Soussou W et al (2012) Electrophysiological mapping of embryonic mouse hearts: mechanisms for developmental pacemaker switch and internodal conduction pathway. J Cardiovasc Electrophysiol 23(3):309–318

    Article  PubMed  Google Scholar 

  39. Kelder TP, Vicente-Steijn R, Harryvan TJ, Kosmidis G, Gittenberger-de Groot AC, Poelmann RE, Schalij MJ, DeRuiter MC, Jongbloed MR (2015) The sinus venosus myocardium contributes to the atrioventricular canal: potential role during atrioventricular node development? J Cell Mol Med 19(6):1375–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Viragh S, Challice CE (1980) The development of the conduction system in the mouse embryo heart. Dev Biol 80(1):28–45

    Article  CAS  PubMed  Google Scholar 

  41. Garcia-Frigola C, Shi Y, Evans SM (2003) Expression of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 during mouse heart development. Gene Expr Patterns 3(6):777–783

    Article  CAS  PubMed  Google Scholar 

  42. Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M (1998) A family of hyperpolarization-activated mammalian cation channels. Nature 393(6685):587–591

    Article  CAS  PubMed  Google Scholar 

  43. Spater D, Abramczuk MK, Buac K, Zangi L, Stachel MW, Clarke J, Sahara M, Ludwig A, Chien KR (2013) A HCN4+ cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells. Nat Cell Biol 15(9):1098–1106

    Article  PubMed  Google Scholar 

  44. Christoffels VM, Mommersteeg MT, Trowe MO, Prall OW, de Gier-de Vries C, Soufan AT, Bussen M, Schuster-Gossler K, Harvey RP, Moorman AF et al (2006) Formation of the venous pole of the heart from an Nk2–5-negative precursor population requires Tbx18. Circ Res 98(12):1555–1563

    Article  CAS  PubMed  Google Scholar 

  45. Mommersteeg MT, Hoogaars WM, Prall OW, de Gier-de Vries C, Wiese C, Clout DE, Papaioannou VE, Brown NA, Harvey RP, Moorman AF et al (2007) Molecular pathway for the localized formation of the sinoatrial node. Circ Res 100(3):354–362

    Article  CAS  PubMed  Google Scholar 

  46. Moorman AF, Anderson RH (2011) Development of the pulmonary vein. Int J Cardiol 147(1):182

    Article  PubMed  Google Scholar 

  47. Lescroart F, Mohun T, Meilhac SM, Bennett M, Buckingham M (2012) Lineage tree for the venous pole of the heart: clonal analysis clarifies controversial genealogy based on genetic tracing. Circ Res 111(10):1313–1322

    Article  CAS  PubMed  Google Scholar 

  48. Rentschler S, Vaidya DM, Tamaddon H, Degenhardt K, Sassoon D, Morley GE, Jalife J, Fishman GI (2001) Visualization and functional characterization of the developing murine cardiac conduction system. Development 128(10):1785–1792

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Anderson RH, Brown NA, Moorman AF (2006) Development and structures of the venous pole of the heart. Dev Dyn 235(1):2–9

    Article  PubMed  Google Scholar 

  50. Jongbloed MR, Schalij MJ, Poelmann RE, Blom NA, Fekkes ML, Wang Z, Fishman GI, Gittenberger-De Groot AC (2004) Embryonic conduction tissue: a spatial correlation with adult arrhythmogenic areas. J Cardiovasc Electrophysiol 15(3):349–355

    Article  PubMed  Google Scholar 

  51. Moorman AF, Christoffels VM, Anderson RH (2005) Anatomic substrates for cardiac conduction. Heart Rhythm 2(8):875–886

    Article  PubMed  Google Scholar 

  52. Sun Y, Liang X, Najafi N, Cass M, Lin L, Cai CL, Chen J, Evans SM (2007) Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol 304(1):286–296

    Article  CAS  PubMed  Google Scholar 

  53. Kapoor N, Liang W, Marban E, Cho HC (2013) Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat Biotechnol 31(1):54–62

    Article  CAS  PubMed  Google Scholar 

  54. Hu YF, Dawkins JF, Cho HC, Marban E, Cingolani E (2014) Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block. Sci Transl Med 6(245):245ra94

  55. Greulich F, Trowe MO, Leffler A, Stoetzer C, Farin HF, Kispert A (2016) Misexpression of Tbx18 in cardiac chambers of fetal mice interferes with chamber-specific developmental programs but does not induce a pacemaker-like gene signature. J Mol Cell Cardiol 97:140–149

  56. Kapoor N, Galang G, Marban E, Cho HC (2011) Transcriptional suppression of connexin43 by TBX18 undermines cell–cell electrical coupling in postnatal cardiomyocytes. J Biol Chem 286(16):14073–14079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Blaschke RJ, Hahurij ND, Kuijper S, Just S, Wisse LJ, Deissler K, Maxelon T, Anastassiadis K, Spitzer J, Hardt SE et al (2007) Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. Circulation 115(14):1830–1838

    Article  CAS  PubMed  Google Scholar 

  58. Espinoza-Lewis RA, Yu L, He F, Liu H, Tang R, Shi J, Sun X, Martin JF, Wang D, Yang J et al (2009) Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nk2–5. Dev Biol 327(2):376–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu H, Chen CH, Espinoza-Lewis RA, Jiao Z, Sheu I, Hu X, Lin M, Zhang Y, Chen Y (2011) Functional redundancy between human SHOX and mouse Shox2 genes in the regulation of sinoatrial node formation and pacemaking function. J Biol Chem 286(19):17029–17038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hoffmann S, Berger IM, Glaser A, Bacon C, Li L, Gretz N, Steinbeisser H, Rottbauer W, Just S, Rappold G (2013) Islet1 is a direct transcriptional target of the homeodomain transcription factor Shox2 and rescues the Shox2-mediated bradycardia. Basic Res Cardiol 108(2):339

    Article  PubMed  PubMed Central  Google Scholar 

  61. Garrity DM, Childs S, Fishman MC (2002) The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome. Development 129(19):4635–4645

    CAS  PubMed  Google Scholar 

  62. Ai D, Liu W, Ma L, Dong F, Lu MF, Wang D, Verzi MP, Cai C, Gage PJ, Evans S et al (2006) Pitx2 regulates cardiac left–right asymmetry by patterning second cardiac lineage-derived myocardium. Dev Biol 296(2):437–449

    Article  CAS  PubMed  Google Scholar 

  63. Nowotschin S, Liao J, Gage PJ, Epstein JA, Campione M, Morrow BE (2006) Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field. Development 133(8):1565–1573

    Article  CAS  PubMed  Google Scholar 

  64. Wang J, Klysik E, Sood S, Johnson RL, Wehrens XH, Martin JF (2010) Pitx2 prevents susceptibility to atrial arrhythmias by inhibiting left-sided pacemaker specification. Proc Natl Acad Sci USA 107(21):9753–9758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang J, Bai Y, Li N, Ye W, Zhang M, Greene SB, Tao Y, Chen Y, Wehrens XH, Martin JF (2014) Pitx2-microRNA pathway that delimits sinoatrial node development and inhibits predisposition to atrial fibrillation. Proc Natl Acad Sci USA 111(25):9181–9186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ionta V, Liang W, Kim EH, Rafie R, Giacomello A, Marban E, Cho HC (2015) SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells, improving biological pacing ability. Stem Cell Rep 4(1):129–142

    Article  CAS  Google Scholar 

  67. Hashem SI, Claycomb WC (2013) Genetic isolation of stem cell-derived pacemaker-nodal cardiac myocytes. Mol Cell Biochem 383(1–2):161–171

    Article  CAS  PubMed  Google Scholar 

  68. Hashem SI, Lam ML, Mihardja SS, White SM, Lee RJ, Claycomb WC (2013) Shox2 regulates the pacemaker gene program in embryoid bodies. Stem Cells Dev 22(21):2915–2926

    Article  CAS  PubMed  Google Scholar 

  69. Hoogaars WM, Tessari A, Moorman AF, de Boer PA, Hagoort J, Soufan AT, Campione M, Christoffels VM (2004) The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res 62(3):489–499

    Article  CAS  PubMed  Google Scholar 

  70. Hoogaars WM, Engel A, Brons JF, Verkerk AO, de Lange FJ, Wong LY, Bakker ML, Clout DE, Wakker V, Barnett P et al (2007) Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev 21(9):1098–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Frank DU, Carter KL, Thomas KR, Burr RM, Bakker ML, Coetzee WA, Tristani-Firouzi M, Bamshad MJ, Christoffels VM, Moon AM (2012) Lethal arrhythmias in Tbx3-deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis. Proc Natl Acad Sci USA 109(3):E154–E163

    Article  CAS  PubMed  Google Scholar 

  72. Bakker ML, Boink GJ, Boukens BJ, Verkerk AO, van den Boogaard M, den Haan AD, Hoogaars WM, Buermans HP, de Bakker JM, Seppen J et al (2012) T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells. Cardiovasc Res 94(3):439–449

    Article  CAS  PubMed  Google Scholar 

  73. Jung JJ, Husse B, Rimmbach C, Krebs S, Stieber J, Steinhoff G, Dendorfer A, Franz WM, David R (2014) Programming and isolation of highly pure physiologically and pharmacologically functional sinus-nodal bodies from pluripotent stem cells. Stem Cell Rep 2(5):592–605

    Article  Google Scholar 

  74. van den Boogaard M, Wong LY, Tessadori F, Bakker ML, Dreizehnter LK, Wakker V, Bezzina CR, t Hoen PA, Bakkers J, Barnett P et al (2012) Genetic variation in T-box binding element functionally affects SCN5A/SCN10A enhancer. J Clin Invest 122(7):2519–2530

    Article  PubMed  PubMed Central  Google Scholar 

  75. Arnolds DE, Liu F, Fahrenbach JP, Kim GH, Schillinger KJ, Smemo S, McNally EM, Nobrega MA, Patel VV, Moskowitz IP (2012) TBX5 drives Scn5a expression to regulate cardiac conduction system function. J Clin Invest 122(7):2509–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wu M, Peng S, Yang J, Tu Z, Cai X, Cai CL, Wang Z, Zhao Y (2014) Baf250a orchestrates an epigenetic pathway to repress the Nkx2.5-directed contractile cardiomyocyte program in the sinoatrial node. Cell Res 24(10):1201–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liang X, Zhang Q, Cattaneo P, Zhuang S, Gong X, Spann NJ, Jiang C, Cao X, Zhao X, Zhang X et al (2015) Transcription factor ISL1 is essential for pacemaker development and function. J Clin Invest 125(8):3256–3268

    Article  PubMed  PubMed Central  Google Scholar 

  78. Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, Yen CA, Schmitt AD, Espinoza CA, Ren B (2013) A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503(7475):290–294

    CAS  PubMed  PubMed Central  Google Scholar 

  79. van Weerd JH, Badi I, van den Boogaard M, Stefanovic S, van de Werken HJ, Gomez-Velazquez M, Badia-Careaga C, Manzanares M, de Laat W, Barnett P et al (2014) A large permissive regulatory domain exclusively controls Tbx3 expression in the cardiac conduction system. Circ Res 115(4):432–441

    Article  PubMed  Google Scholar 

  80. Park EJ, Ogden LA, Talbot A, Evans S, Cai CL, Black BL, Frank DU, Moon AM (2006) Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. Development 133(12):2419–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sizarov A, Devalla HD, Anderson RH, Passier R, Christoffels VM, Moorman AF (2011) Molecular analysis of patterning of conduction tissues in the developing human heart. Circ Arrhythm Electrophysiol 4(4):532–542

    Article  PubMed  Google Scholar 

  82. Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, Qyang Y, Bu L, Sasaki M, Martin-Puig S et al (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127(6):1151–1165

    Article  CAS  PubMed  Google Scholar 

  83. de Pater E, Clijsters L, Marques SR, Lin YF, Garavito-Aguilar ZV, Yelon D, Bakkers J (2009) Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart. Development 136(10):1633–1641

    Article  PubMed  PubMed Central  Google Scholar 

  84. Tessadori F, van Weerd JH, Burkhard SB, Verkerk AO, de Pater E, Boukens BJ, Vink A, Christoffels VM, Bakkers J (2012) Identification and functional characterization of cardiac pacemaker cells in zebrafish. PLoS One 7(10):e47644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vedantham V, Galang G, Evangelista M, Deo RC, Srivastava D (2015) RNA sequencing of mouse sinoatrial node reveals an upstream regulatory role for islet-1 in cardiac pacemaker cells. Circ Res 116(5):797–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dorn T, Goedel A, Lam JT, Haas J, Tian Q, Herrmann F, Bundschu K, Dobreva G, Schiemann M, Dirschinger R et al (2015) Direct nk2–5 transcriptional repression of isl1 controls cardiomyocyte subtype identity. Stem Cells 33(4):1113–1129

    Article  CAS  PubMed  Google Scholar 

  87. Le Scouarnec S, Bhasin N, Vieyres C, Hund TJ, Cunha SR, Koval O, Marionneau C, Chen B, Wu Y, Demolombe S et al (2008) Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease. Proc Natl Acad Sci USA 105(40):15617–15622

    Article  PubMed  PubMed Central  Google Scholar 

  88. Takeshita K, Fujimori T, Kurotaki Y, Honjo H, Tsujikawa H, Yasui K, Lee JK, Kamiya K, Kitaichi K, Yamamoto K et al (2004) Sinoatrial node dysfunction and early unexpected death of mice with a defect of klotho gene expression. Circulation 109(14):1776–1782

    Article  PubMed  Google Scholar 

  89. den Hoed M, Eijgelsheim M, Esko T, Brundel BJ, Peal DS, Evans DM, Nolte IM, Segre AV, Holm H, Handsaker RE et al (2013) Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders. Nat Genet 45(6):621–631

    Article  Google Scholar 

  90. Prall OW, Menon MK, Solloway MJ, Watanabe Y, Zaffran S, Bajolle F, Biben C, McBride JJ, Robertson BR, Chaulet H et al (2007) An Nk2–5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell 128(5):947–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dupays L, Jarry-Guichard T, Mazurais D, Calmels T, Izumo S, Gros D, Theveniau-Ruissy M (2005) Dysregulation of connexins and inactivation of NFATc1 in the cardiovascular system of Nk2–5 null mutants. J Mol Cell Cardiol 38(5):787–798

    Article  CAS  PubMed  Google Scholar 

  92. Linhares VL, Almeida NA, Menezes DC, Elliott DA, Lai D, Beyer EC, Campos de Carvalho AC, Costa MW (2004) Transcriptional regulation of the murine Connexin40 promoter by cardiac factors Nk2–5, GATA4 and Tbx5. Cardiovasc Res 64(3):402–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nakashima Y, Yanez DA, Touma M, Nakano H, Jaroszewicz A, Jordan MC, Pellegrini M, Roos KP, Nakano A (2014) Nk2–5 suppresses the proliferation of atrial myocytes and conduction system. Circ Res 114(7):1103–1113

    Article  CAS  PubMed  Google Scholar 

  94. Pfeufer A, van Noord C, Marciante KD, Arking DE, Larson MG, Smith AV, Tarasov KV, Muller M, Sotoodehnia N, Sinner MF et al (2010) Genome-wide association study of PR interval. Nat Genet 42(2):153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Basson CT, Cowley GS, Solomon SD, Weissman B, Poznanski AK, Traill TA, Seidman JG, Seidman CE (1994) The clinical and genetic spectrum of the Holt–Oram syndrome (heart-hand syndrome). N Engl J Med 330(13):885–891

    Article  CAS  PubMed  Google Scholar 

  96. Benson DW, Wang DW, Dyment M, Knilans TK, Fish FA, Strieper MJ, Rhodes TH, George AL Jr (2003) Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest 112(7):1019–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Makiyama T, Akao M, Tsuji K, Doi T, Ohno S, Takenaka K, Kobori A, Ninomiya T, Yoshida H, Takano M et al (2005) High risk for bradyarrhythmic complications in patients with Brugada syndrome caused by SCN5A gene mutations. J Am Coll Cardiol 46(11):2100–2106

  98. Butters TD, Aslanidi OV, Inada S, Boyett MR, Hancox JC, Lei M, Zhang H (2010) Mechanistic links between Na+ channel (SCN5A) mutations and impaired cardiac pacemaking in sick sinus syndrome. Circ Res 107(1):126–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lei M, Goddard C, Liu J, Leoni AL, Royer A, Fung SS, Xiao G, Ma A, Zhang H, Charpentier F et al (2005) Sinus node dysfunction following targeted disruption of the murine cardiac sodium channel gene Scn5a. J Physiol 567(Pt 2):387–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tessari A, Pietrobon M, Notte A, Cifelli G, Gage PJ, Schneider MD, Lembo G, Campione M (2008) Myocardial Pitx2 differentially regulates the left atrial identity and ventricular asymmetric remodeling programs. Circ Res 102(7):813–822

    Article  CAS  PubMed  Google Scholar 

  101. Campione M, Steinbeisser H, Schweickert A, Deissler K, van Bebber F, Lowe LA, Nowotschin S, Viebahn C, Haffter P, Kuehn MR et al (1999) The homeobox gene Pitx2: mediator of asymmetric left–right signaling in vertebrate heart and gut looping. Development 126(6):1225–1234

    CAS  PubMed  Google Scholar 

  102. Campione M, Ros MA, Icardo JM, Piedra E, Christoffels VM, Schweickert A, Blum M, Franco D, Moorman AF (2001) Pitx2 expression defines a left cardiac lineage of cells: evidence for atrial and ventricular molecular isomerism in the iv/iv mice. Dev Biol 231(1):252–264

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

YFS was supported by grants from the Ministry of Science and Technology China (2013CB967400) and National Natural Science Foundation of China (NSFC) (81570285); SME by grants from NIH (HL123747, HL119967). XQL by grants from NSFC (81370196, 81670448, 81221001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfu Sun.

Ethics declarations

Conflict of interest

The authors confirm that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Evans, S.M. & Sun, Y. Development of the cardiac pacemaker. Cell. Mol. Life Sci. 74, 1247–1259 (2017). https://doi.org/10.1007/s00018-016-2400-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2400-1

Keywords

Navigation