Skip to main content

Advertisement

Log in

Biochemical alterations in the oocyte in support of early embryonic development

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Notwithstanding the enormous reproductive potential encapsulated within a mature mammalian oocyte, these cells present only a limited window for fertilization before defaulting to an apoptotic cascade known as post-ovulatory oocyte aging. The only cell with the capacity to rescue this potential is the fertilizing spermatozoon. Indeed, the union of these cells sets in train a remarkable series of events that endows the oocyte with the capacity to divide and differentiate into the trillions of cells that comprise a new individual. Traditional paradigms hold that, beyond the initial stimulation of fluctuating calcium (Ca2+) required for oocyte activation, the fertilizing spermatozoon plays limited additional roles in the early embryo. While this model has now been drawn into question in view of the recent discovery that spermatozoa deliver developmentally important classes of small noncoding RNAs and other epigenetic modulators to oocytes during fertilization, it is nevertheless apparent that the primary responsibility for oocyte activation rests with a modest store of maternally derived proteins and mRNA accumulated during oogenesis. It is, therefore, not surprising that widespread post-translational modifications, in particular phosphorylation, hold a central role in endowing these proteins with sufficient functional diversity to initiate embryonic development. Indeed, proteins targeted for such modifications have been linked to oocyte activation, recruitment of maternal mRNAs, DNA repair and resumption of the cell cycle. This review, therefore, seeks to explore the intimate relationship between Ca2+ release and the suite of molecular modifications that sweep through the oocyte to ensure the successful union of the parental germlines and ensure embryogenic fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wilcox AJ, Weinberg CR, Baird DD (1998) Post-ovulatory ageing of the human oocyte and embryo failure. Hum Reprod 13:394–397

    Article  CAS  PubMed  Google Scholar 

  2. Lord T, Aitken RJ (2015) Fertilization stimulates 8-hydroxy-2′-deoxyguanosine repair and antioxidant activity to prevent mutagenesis in the embryo. Dev Biol 406:1–13

    Article  CAS  PubMed  Google Scholar 

  3. Plachot M, de Grouchy J, Junca AM, Mandelbaum J, Salat-Baroux J, Cohen J (1988) Chromosome analysis of human oocytes and embryos: does delayed fertilization increase chromosome imbalance? Hum Reprod 3:125–127

    Article  CAS  PubMed  Google Scholar 

  4. Lord T, Nixon B, Jones KT, Aitken RJ (2013) Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization in vitro. Biol Reprod 88:67

    Article  PubMed  CAS  Google Scholar 

  5. Swann K, Lai FA (2016) Egg activation at fertilization by a soluble sperm protein. Physiol Rev 96:127–149

    Article  PubMed  Google Scholar 

  6. Lawrence Y, Whitaker M, Swann K (1997) Sperm-egg fusion is the prelude to the initial Ca2+ increase at fertilization in the mouse. Development 124:233–241

    CAS  PubMed  Google Scholar 

  7. Marangos P, FitzHarris G, Carroll J (2003) Ca2+ oscillations at fertilization in mammals are regulated by the formation of pronuclei. Development 130:1461–1472

    Article  CAS  PubMed  Google Scholar 

  8. Saunders CM, Larman MG, Parrington J, Cox LJ, Royse J, Blayney LM, Swann K, Lai FA (2002) PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development 129:3533–3544

    CAS  PubMed  Google Scholar 

  9. Miyazaki S, Ito M (2006) Calcium signals for egg activation in mammals. J Pharmacol Sci 100:545–552

    Article  CAS  PubMed  Google Scholar 

  10. Lord T, Martin JH, Aitken RJ (2015) Accumulation of electrophilic aldehydes during postovulatory aging of mouse oocytes causes reduced fertility, oxidative stress, and apoptosis. Biol Reprod 92:33

    Article  PubMed  CAS  Google Scholar 

  11. Marchetti F, Bishop J, Gingerich J, Wyrobek AJ (2015) Meiotic interstrand DNA damage escapes paternal repair and causes chromosomal aberrations in the zygote by maternal misrepair. Sci Rep 5:7689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Derijck A, van der Heijden G, Giele M, Philippens M, de Boer P (2008) DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Hum Mol Genet 17:1922–1937

    Article  CAS  PubMed  Google Scholar 

  13. Nomikos M, Swann K, Lai FA (2015) Is PAWP the “real” sperm factor? Asian J Androl 17:444–446

    PubMed  PubMed Central  Google Scholar 

  14. Vadnais ML, Gerton GL (2015) From PAWP to “Pop”: opening up new pathways to fatherhood. Asian J Androl 17:443–444

    PubMed  PubMed Central  Google Scholar 

  15. Takahashi T, Takahashi E, Igarashi H, Tezuka N, Kurachi H (2003) Impact of oxidative stress in aged mouse oocytes on calcium oscillations at fertilization. Mol Reprod Dev 66:143–152

    Article  CAS  PubMed  Google Scholar 

  16. Benkhalifa M, Ferreira YJ, Chahine H, Louanjli N, Miron P, Merviel P, Copin H (2014) Mitochondria: participation to infertility as source of energy and cause of senescence. Int J Biochem Cell Biol 55:60–64

    Article  CAS  PubMed  Google Scholar 

  17. Aitken RJ, Gordon E, Harkiss D, Twigg JP, Milne P, Jennings Z, Irvine DS (1998) Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod 59:1037–1046

    Article  CAS  PubMed  Google Scholar 

  18. Aitken RJ, Harkiss D, Knox W, Paterson M, Irvine DS (1998) A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation. J Cell Sci 111:645–656

    CAS  PubMed  Google Scholar 

  19. Griveau JF, Renard P, Le Lannou D (1995) Superoxide anion production by human spermatozoa as a part of the ionophore-induced acrosome reaction process. Int J Androl 18:67–74

    Article  CAS  PubMed  Google Scholar 

  20. Houston B, Curry B, Aitken RJ (2015) Human spermatozoa possess an IL4I1 l-amino acid oxidase with a potential role in sperm function. Reproduction 149:587–596

    Article  CAS  PubMed  Google Scholar 

  21. Aitken RJ, Whiting S, De Iuliis GN, McClymont S, Mitchell LA, Baker MA (2012) Electrophilic aldehydes generated by sperm metabolism activate mitochondrial reactive oxygen species generation and apoptosis by targeting succinate dehydrogenase. J Biol Chem 287:33048–33060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moazamian R, Polhemus A, Connaughton H, Fraser B, Whiting S, Gharagozloo P, Aitken RJ (2015) Oxidative stress and human spermatozoa: diagnostic and functional significance of aldehydes generated as a result of lipid peroxidation. Mol Hum Reprod 21:502–515

    Article  PubMed  Google Scholar 

  23. Tarin JJ, Ten J, Vendrell FJ, Cano A (1998) Dithiothreitol prevents age-associated decrease in oocyte/conceptus viability in vitro. Hum Reprod 13:381–386

    Article  CAS  PubMed  Google Scholar 

  24. McGinnis LK, Pelech S, Kinsey WH (2014) Post-ovulatory aging of oocytes disrupts kinase signaling pathways and lysosome biogenesis. Mol Reprod Dev 81:928–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kikuchi K, Naito K, Noguchi J, Kaneko H, Tojo H (2002) Maturation/M-phase promoting factor regulates aging of porcine oocytes matured in vitro. Cloning Stem Cells 4:211–222

    Article  CAS  PubMed  Google Scholar 

  26. Takahashi T, Igarashi H, Kawagoe J, Amita M, Hara S, Kurachi H (2008) Poor embryo development in mouse oocytes aged in vitro is associated with impaired calcium homeostasis1. Biol Reprod 80:493–502

    Article  PubMed  CAS  Google Scholar 

  27. Zhang N, Wakai T, Fissore RA (2011) Caffeine alleviates the deterioration of Ca(2+) release mechanisms and fragmentation of in vitro-aged mouse eggs. Mol Reprod Dev 78:684–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cecconi S, Rossi G, Deldar H, Cellini V, Patacchiola F, Carta G, Macchiarelli G, Canipari R (2014) Post-ovulatory ageing of mouse oocytes affects the distribution of specific spindle-associated proteins and Akt expression levels. Reprod Fertil Dev 26:562–569

    Article  CAS  PubMed  Google Scholar 

  29. Jacobs AT, Marnett LJ (2010) Systems analysis of protein modification and cellular responses induced by electrophile stress. Acc Chem Res 43:673–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yin H, Xu L, Porter NA (2011) Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 111:5944–5972

    Article  CAS  PubMed  Google Scholar 

  31. Voulgaridou GP, Anestopoulos I, Franco R, Panayiotidis MI, Pappa A (2011) DNA damage induced by endogenous aldehydes: current state of knowledge. Mutat Res 711:13–27

    Article  CAS  PubMed  Google Scholar 

  32. Chen C, Kattera S (2003) Rescue ICSI of oocytes that failed to extrude the second polar body 6 h post-insemination in conventional IVF. Hum Reprod 18(10):2118–2121

    Article  PubMed  Google Scholar 

  33. Pehlivan T, Rubio C, Ruiz A, Navarro J, Remohí J, Pellicer A, Simón C (2004) Embryonic chromosomal abnormalities obtained after rescue intracytoplasmic sperm injection of 1-day-old unfertilized oocytes. J Assist Reprod Genet 21(2):55–57

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li Q, Geng X, Zheng W, Tang J, Xu B, Shi Q (2012) Current understanding of ovarian aging. Sci China Life Sci 55:659–669

    Article  CAS  PubMed  Google Scholar 

  35. Perry JR, Murray A, Day FR, Ong KK (2015) Molecular insights into the aetiology of female reproductive ageing. Nat Rev Endocrinol 11:725–734

    Article  CAS  PubMed  Google Scholar 

  36. Tatone C, Di Emidio G, Vitti M, Di Carlo M, Santini S Jr, D’Alessandro AM, Falone S, Amicarelli F (2015) Sirtuin functions in female fertility: possible role in oxidative stress and aging. Oxid Med Cell Longev 2015:659687

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tatone C, Amicarelli F, Carbone MC, Monteleone P, Caserta D, Marci R, Artini PG, Piomboni P, Focarelli R (2008) Cellular and molecular aspects of ovarian follicle ageing. Hum Reprod Update 14:131–142

    Article  CAS  PubMed  Google Scholar 

  38. Eichenlaub-Ritter U, Wieczorek M, Luke S, Seidel T (2011) Age related changes in mitochondrial function and new approaches to study redox regulation in mammalian oocytes in response to age or maturation conditions. Mitochondrion 11:783–796

    Article  CAS  PubMed  Google Scholar 

  39. Fan H, Yang HC, You L, Wang YY, He WJ, Hao CM (2013) The histone deacetylase, SIRT1, contributes to the resistance of young mice to ischemia/reperfusion-induced acute kidney injury. Kidney Int 83:404–413

    Article  CAS  PubMed  Google Scholar 

  40. Kao CL, Chen LK, Chang YL, Yung MC, Hsu CC, Chen YC, Lo WL, Chen SJ, Ku HH, Hwang SJ (2010) Resveratrol protects human endothelium from H(2)O(2)-induced oxidative stress and senescence via SirT1 activation. J Atheroscler Thromb 17:970–979

    Article  CAS  PubMed  Google Scholar 

  41. Rausell F, Pertusa JF, Gomez-Piquer V, Hermenegildo C, Garcia-Perez MA, Cano A, Tarin JJ (2007) Beneficial effects of dithiothreitol on relative levels of glutathione S-transferase activity and thiols in oocytes, and cell number, DNA fragmentation and allocation at the blastocyst stage in the mouse. Mol Reprod Dev 74:860–869

    Article  CAS  PubMed  Google Scholar 

  42. Combelles CM, Gupta S, Agarwal A (2009) Could oxidative stress influence the in-vitro maturation of oocytes? Reprod Biomed Online 18:864–880

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ge ZJ, Schatten H, Zhang CL, Sun QY (2015) Oocyte ageing and epigenetics. Reproduction 149:R103–R114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Trapphoff T, Heiligentag M, Dankert D, Demond H, Deutsch D, Frohlich T, Arnold GJ, Grummer R, Horsthemke B, Eichenlaub-Ritter U (2016) Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. Hum Reprod 31:133–149

    Article  CAS  PubMed  Google Scholar 

  45. Ducibella T, Huneau D, Angelichio E, Xu Z, Schultz RM, Kopf GS, Fissore R, Madoux S, Ozil J-P (2002) Egg-to-embryo transition is driven by differential responses to Ca2+ oscillation number. Dev Biol 250:280–291

    Article  CAS  PubMed  Google Scholar 

  46. Deng MQ, Sheng SS (2000) A specific inhibitor of p34 (cdc2)/cyclin B suppresses fertilization-induced calcium oscillations in mouse eggs. Biol Reprod 62:873–878

    Article  CAS  PubMed  Google Scholar 

  47. Ducibella T, Schultz RM, Ozil JP (2006) Role of calcium signals in early development. Semin Cell Dev Biol 17:324–332

    Article  CAS  PubMed  Google Scholar 

  48. Ozil JP, Banrezes B, Toth S, Pan H, Schultz RM (2006) Ca2+ oscillatory pattern in fertilized mouse eggs affects gene expression and development to term. Dev Biol 300:534–544

    Article  CAS  PubMed  Google Scholar 

  49. Ozil JP, Markoulaki S, Toth S, Matson S, Banrezes B, Knott JG, Schultz RM, Huneau D, Ducibella T (2005) Egg activation events are regulated by the duration of a sustained [Ca2+]cyt signal in the mouse. Dev Biol 282:39–54

    Article  CAS  PubMed  Google Scholar 

  50. Kline D, Kline JT (1992) Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev Biol 149:80–89

    Article  CAS  PubMed  Google Scholar 

  51. Miao YL, Stein P, Jefferson WN, Padilla-Banks E, Williams CJ (2012) Calcium influx-mediated signaling is required for complete mouse egg activation. Proc Natl Acad Sci U S A 109:4169–4174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Didion BA, Martin MJ, Markert CL (1990) Parthenogenetic activation of mouse and pig oocytes matured in vitro. Theriogenology 33:1165–1175

    Article  Google Scholar 

  53. Ibanez E, Albertini DF, Overstrom EW (2005) Effect of genetic background and activating stimulus on the timing of meiotic cell cycle progression in parthenogenetically activated mouse oocytes. Reproduction 129:27–38

    Article  CAS  PubMed  Google Scholar 

  54. Zhang N, Yoon SY, Parys JB, Fissore RA (2015) Effect of M-phase kinase phosphorylations on type 1 inositol 1,4,5-trisphosphate receptor-mediated Ca2+ responses in mouse eggs. Cell Calcium 58:476–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yeste M, Jones C, Amdani SN, Patel S, Coward K (2016) Oocyte activation deficiency: a role for an oocyte contribution? Hum Reprod Update 22:23–47

    Article  PubMed  Google Scholar 

  56. Aarabi M, Balakier H, Bashar S, Moskovtsev SI, Sutovsky P, Librach CL, Oko R (2014) Sperm-derived WW domain-binding protein, PAWP, elicits calcium oscillations and oocyte activation in humans and mice. FASEB J 28:4434–4440

    Article  CAS  PubMed  Google Scholar 

  57. Satouh Y, Nozawa K, Ikawa M (2015) Sperm postacrosomal WW domain-binding protein is not required for mouse egg activation. Biol Reprod 93:94

    Article  PubMed  CAS  Google Scholar 

  58. Nomikos M, Swann K, Lai FA (2012) Starting a new life: sperm PLC-zeta mobilizes the Ca2+ signal that induces egg activation and embryo development. Bioessays 34:126–134

    Article  CAS  PubMed  Google Scholar 

  59. Swann K, Yu Y (2008) The dynamics of calcium oscillations that activate mammalian eggs. Int J Dev Biol 52:585–594

    Article  CAS  PubMed  Google Scholar 

  60. Yoon SY, Eum JH, Lee JE, Lee HC, Kim YS, Han JE, Won HJ, Park SH, Shim SH, Lee WS et al (2012) Recombinant human phospholipase C zeta 1 induces intracellular calcium oscillations and oocyte activation in mouse and human oocytes. Hum Reprod 27:1768–1780

    Article  CAS  PubMed  Google Scholar 

  61. He CL, Damiani P, Ducibella T, Takahashi M, Tanzawa K, Parys JB, Fissore RA (1999) Isoforms of the inositol 1,4,5-trisphosphate receptor are expressed in bovine oocytes and ovaries: the type-1 isoform is down-regulated by fertilization and by injection of adenophostin A. Biol Reprod 61:935–943

    Article  CAS  PubMed  Google Scholar 

  62. Homa ST, Swann K (1994) Fertilization and early embryology: a cytosolic sperm factor triggers calcium oscillations and membrane hyperpolarizations in human oocytes. Hum Reprod 9:2356–2361

    CAS  PubMed  Google Scholar 

  63. Stricker SA (1999) Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev Biol 211:157–176

    Article  CAS  PubMed  Google Scholar 

  64. Wu AT, Sutovsky P, Manandhar G, Xu W, Katayama M, Day BN, Park KW, Yi YJ, Xi YW, Prather RS et al (2007) PAWP, a sperm-specific WW domain-binding protein, promotes meiotic resumption and pronuclear development during fertilization. J Biol Chem 282:12164–12175

    Article  CAS  PubMed  Google Scholar 

  65. Anifandis G, Messini CI, Dafopoulos K, Daponte A, Messinis IE (2016) Sperm contributions to oocyte activation: more that meets the eye. J Assist Reprod Genet 33:313–316

    Article  PubMed  Google Scholar 

  66. Cox LJ, Larman MG, Saunders CM, Hashimoto K, Swann K, Lai FA (2002) Sperm phospholipase Czeta from humans and cynomolgus monkeys triggers Ca2+ oscillations, activation and development of mouse oocytes. Reproduction 124:611–623

    Article  CAS  PubMed  Google Scholar 

  67. Kouchi Z, Fukami K, Shikano T, Oda S, Nakamura Y, Takenawa T, Miyazaki S (2004) Recombinant phospholipase C zeta has high Ca2+ sensitivity and induces Ca2+ oscillations in mouse eggs. J Biol Chem 279:10408–10412

    Article  CAS  PubMed  Google Scholar 

  68. Nomikos M, Yu Y, Elgmati K, Theodoridou M, Campbell K, Vassilakopoulou V, Zikos C, Livaniou E, Amso N, Nounesis G et al (2013) Phospholipase C zeta rescues failed oocyte activation in a prototype of male factor infertility. Fertil Steril 99:76–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Amdani SN, Yeste M, Jones C, Coward K (2016) Phospholipase C zeta (PLCzeta) and male infertility: clinical update and topical developments. Adv Biol Regul 61:58–67

    Article  CAS  PubMed  Google Scholar 

  70. Lee HC, Arny M, Grow D, Dumesic D, Fissore RA, Jellerette-Nolan T (2014) Protein phospholipase C zeta1 expression in patients with failed ICSI but with normal sperm parameters. J Assist Reprod Genet 31:749–756

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yelumalai S, Yeste M, Jones C, Amdani SN, Kashir J, Mounce G, Da Silva SJ, Barratt CL, McVeigh E, Coward K (2015) Total levels, localization patterns, and proportions of sperm exhibiting phospholipase C zeta are significantly correlated with fertilization rates after intracytoplasmic sperm injection. Fertil Steril 104(561–8):e4

    Google Scholar 

  72. Yoon S-Y, Jellerette T, Salicioni AM, Lee HC, Yoo M-S, Coward K, Parrington J, Grow D, Cibelli JB, Visconti PE et al (2008) Human sperm devoid of PLC, zeta 1 fail to induce Ca2+ release and are unable to initiate the first step of embryo development. J Clin Invest 118:3671–3681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Heytens E, Parrington J, Coward K, Young C, Lambrecht S, Yoon S-Y, Fissore RA, Hamer R, Deane CM, Ruas M et al (2009) Reduced amounts and abnormal forms of phospholipase C zeta (PLCζ) in spermatozoa from infertile men. Hum Reprod 24:2417–2428

    Article  CAS  PubMed  Google Scholar 

  74. Javadian-Elyaderani S, Ghaedi K, Tavalaee M, Rabiee F, Deemeh MR, Nasr-Esfahani MH (2016) Diagnosis of genetic defects through parallel assessment of PLCzeta and CAPZA3 in infertile men with history of failed oocyte activation. Iran J Basic Med Sci 19:281–289

    PubMed  PubMed Central  Google Scholar 

  75. Tavalaee M, Nasr-Esfahani MH (2016) Expression profile of PLCzeta, PAWP, and TR-KIT in association with fertilization potential, embryo development, and pregnancy outcomes in globozoospermic candidates for intra-cytoplasmic sperm injection and artificial oocyte activation. Andrology 4:850–856

    Article  CAS  PubMed  Google Scholar 

  76. Que EL, Bleher R, Duncan FE, Kong BY, Gleber SC, Vogt S, Chen S, Garwin SA, Bayer AR, Dravid VP et al (2015) Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks. Nat Chem 7:130–139

    Article  CAS  PubMed  Google Scholar 

  77. Kong BY, Duncan FE, Que EL, Kim AM, O’Halloran TV, Woodruff TK (2014) Maternally-derived zinc transporters ZIP6 and ZIP10 drive the mammalian oocyte-to-egg transition. Mol Hum Reprod 20:1077–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Duncan FE, Que EL, Zhang N, Feinberg EC, O’Halloran TV, Woodruff TK (2016) The zinc spark is an inorganic signature of human egg activation. Sci Rep 6:24737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim AM, Bernhardt ML, Kong BY, Ahn RW, Vogt S, Woodruff TK, O’Halloran TV (2011) Zinc sparks are triggered by fertilization and facilitate cell cycle resumption in mammalian eggs. ACS Chem Biol 6:716–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim AM, Vogt S, O’Halloran TV, Woodruff TK (2010) Zinc availability regulates exit from meiosis in maturing mammalian oocytes. Nat Chem Biol 6:674–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bernhardt ML, Kong BY, Kim AM, O’Halloran TV, Woodruff TK (2012) A zinc-dependent mechanism regulates meiotic progression in mammalian oocytes. Biol Reprod 86:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Bernhardt ML, Kim AM, O’Halloran TV, Woodruff TK (2011) Zinc requirement during meiosis I-meiosis II transition in mouse oocytes is independent of the MOS-MAPK pathway. Biol Reprod 84:526–536

    Article  CAS  PubMed  Google Scholar 

  83. Kong BY, Duncan FE, Que EL, Xu Y, Vogt S, O’Halloran TV, Woodruff TK (2015) The inorganic anatomy of the mammalian preimplantation embryo and the requirement of zinc during the first mitotic divisions. Dev Dyn 244:935–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang N, Duncan FE, Que EL, O’Halloran TV, Woodruff TK (2016) The fertilization-induced zinc spark is a novel biomarker of mouse embryo quality and early development. Sci Rep 6:22772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ducibella T, Fissore R (2008) The roles of Ca2+, downstream protein kinases, and oscillatory signaling in regulating fertilization and the activation of development. Dev Biol 315:257–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Karve TM, Cheema AK (2011) Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. J Amino Acids 2011:207691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Kim DA, Suh EK (2014) Defying DNA double-strand break-induced death during prophase I meiosis by temporal TAp63alpha phosphorylation regulation in developing mouse oocytes. Mol Cell Biol 34:1460–1473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Li L, Zheng P, Dean J (2010) Maternal control of early mouse development. Development 137:859–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Flach G, Johnson MH, Braude PR, Taylor RA, Bolton VN (1982) The transition from maternal to embryonic control in the 2-cell mouse embryo. EMBO J 1:681–686

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Schultz RM (1993) Regulation of zygotic gene activation in the mouse. Bioessays 15:531–538

    Article  CAS  PubMed  Google Scholar 

  91. Telford NA, Watson AJ, Schultz GA (1990) Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol Reprod Dev 26:90–100

    Article  CAS  PubMed  Google Scholar 

  92. Cohen P (2000) The regulation of protein function by multisite phosphorylation–a 25 year update. Trends Biochem Sci 25:596–601

    Article  CAS  PubMed  Google Scholar 

  93. Kranuchunas AR, Horner VL, Wolfner MF (2012) Protein phosphorylation changes reveal new candidates in the regulation of egg activation and early embryogenesis in D. melanogaster. Dev Biol 370:125–134

    Article  CAS  Google Scholar 

  94. Endo Y, Kopf GS, Schultz RM (1986) Stage-specific changes in protein phosphorylation accompanying meiotic maturation of mouse oocytes and fertilization of mouse eggs. J Exp Zool 239:401–409

    Article  CAS  PubMed  Google Scholar 

  95. Halet G, Tunwell R, Parkinson SJ, Carroll J (2004) Conventional PKCs regulate the temporal pattern of Ca2+ oscillations at fertilization in mouse eggs. J Cell Biol 164:1033–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gonzalez-Garcia JR, Machaty Z, Lai FA, Swann K (2013) The dynamics of PKC-induced phosphorylation TRiggered by Ca(2+) oscillations in mouse eggs. J Cell Physiol 228:110–119

    Article  CAS  PubMed  Google Scholar 

  97. Baluch DP, Koeneman BA, Hatch KR, McGaughey RW, Capco DG (2004) PKC isotypes in post-activated and fertilized mouse eggs: association with the meiotic spindle. Dev Biol 274:45–55

    Article  PubMed  CAS  Google Scholar 

  98. Luria A, Tennenbaum T, Sun QY, Rubinstein S, Breitbart H (2000) Differential localization of conventional protein kinase C isoforms during mouse oocyte development. Biol Reprod 62:1564–1570

    Article  CAS  PubMed  Google Scholar 

  99. Markoulaki S, Matson S, Ducibella T (2004) Fertilization stimulates long-lasting oscillations of CaMKII activity in mouse eggs. Dev Biol 272:15–25

    Article  CAS  PubMed  Google Scholar 

  100. Tatone C, Delle Monache S, Iorio R, Caserta D, Di Cola M, Colonna R (2002) Possible role for Ca(2+) calmodulin-dependent protein kinase II as an effector of the fertilization Ca(2+) signal in mouse oocyte activation. Mol Hum Reprod 8:750–757

    Article  CAS  PubMed  Google Scholar 

  101. Komatsu S, Ikebe M (2004) ZIP kinase is responsible for the phosphorylation of myosin II and necessary for cell motility in mammalian fibroblasts. J Cell Biol 165:243–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Deng M, Williams CJ, Schultz RM (2005) Role of MAP kinase and myosin light chain kinase in chromosome-induced development of mouse egg polarity. Dev Biol 278:358–366

    Article  CAS  PubMed  Google Scholar 

  103. Matson S, Markoulaki S, Ducibella T (2006) Antagonists of myosin light chain kinase and of myosin II inhibit specific events of egg activation in fertilized mouse eggs. Biol Reprod 74:169–176

    Article  CAS  PubMed  Google Scholar 

  104. Zhong ZS, Huo LJ, Liang CG, Chen DY, Sun QY (2005) Small GTPase RhoA is required for ooplasmic segregation and spindle rotation, but not for spindle organization and chromosome separation during mouse oocyte maturation, fertilization, and early cleavage. Mol Reprod Dev 71:256–261

    Article  CAS  PubMed  Google Scholar 

  105. Zhang JY, Dong HS, Oqani RK, Lin T, Kang JW, Jin DI (2014) Distinct roles of ROCK1 and ROCK2 during development of porcine preimplantation embryos. Reproduction 148:99–107

    Article  CAS  PubMed  Google Scholar 

  106. McGinnis LA, Lee HJ, Robinson DN, Evans JP (2015) MAPK3/1 (ERK1/2) and myosin light chain kinase in mammalian eggs affect myosin-II function and regulate the metaphase II state in a calcium- and zinc-dependent manner. Biol Reprod 92(146):1–14

    CAS  Google Scholar 

  107. Liang QX, Zhang QH, Qi ST, Wang ZW, Hu MW, Ma XS, Zhu MS, Schatten H, Wang ZB, Sun QY (2015) Deletion of Mylk1 in oocytes causes delayed morula-to-blastocyst transition and reduced fertility without affecting folliculogenesis and oocyte maturation in mice. Biol Reprod 92:97

    Article  PubMed  CAS  Google Scholar 

  108. Simerly C, Nowak G, de Lanerolle P, Schatten G (1998) Differential expression and functions of cortical myosin IIA and IIB isotypes during meiotic maturation, fertilization, and mitosis in mouse oocytes and embryos. Mol Biol Cell 9:2509–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bement WM, Benink HA, von Dassow G (2005) A microtubule-dependent zone of active RhoA during cleavage plane specification. J Cell Biol 170:91–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lucero A, Stack C, Bresnick AR, Shuster CB (2006) A global, myosin light chain kinase-dependent increase in myosin II contractility accompanies the metaphase-anaphase transition in sea urchin eggs. Mol Biol Cell 17:4093–4104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lee B, Vermassen E, Yoon S-Y, Vanderheyden V, Ito J, Alfandari D, De Smedt H, Parys JB, Fissore RA (2006) Phosphorylation of IP(3)R1 and the regulation of [Ca(2+)](i) responses at fertilization: a role for the MAP kinase pathway. Dev (Cambridge, England) 133:4355–4365

    Article  CAS  Google Scholar 

  112. Ito J, Yoon S-Y, Lee B, Vanderheyden V, Vermassen E, Wojcikiewicz R, Alfandari D, De Smedt H, Parys JB, Fissore RA (2008) Inositol 1,4,5-trisphosphate receptor 1, a widespread Ca2+ channel, is a novel substrate of polo-like kinase 1 in eggs. Dev Biol 320:402–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Almeida KH, Sobol RW (2007) A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair 6:695–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hakem R (2008) DNA-damage repair; the good, the bad, and the ugly. EMBO J 27:589–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Maiani E, Diederich M, Gonfloni S (2011) DNA damage response: the emerging role of c-Abl as a regulatory switch? Biochem Pharmacol 82:1269–1276

    Article  CAS  PubMed  Google Scholar 

  116. Morgan WF, Corcoran J, Hartmann A, Kaplan MI, Limoli CL, Ponnaiya B (1998) DNA double-strand breaks, chromosomal rearrangements, and genomic instability. Mutat Res 404:125–128

    Article  CAS  PubMed  Google Scholar 

  117. Yuan S, Tang C, Zhang Y, Wu J, Bao J, Zheng H, Xu C, Yan W (2015) mir-34b/c and mir-449a/b/c are required for spermatogenesis, but not for the first cleavage division in mice. Biol Open 4:212–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ostermeier GC, Miller D, Huntriss JD, Diamond MP, Krawetz SA (2004) Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature 429:154

    Article  CAS  PubMed  Google Scholar 

  119. Kumar M, Kumar K, Jain S, Hassan T, Dada R (2013) Novel insights into the genetic and epigenetic paternal contribution to the human embryo. Clinics 68:5–14

    Article  PubMed  PubMed Central  Google Scholar 

  120. Rodgers AB, Morgan CP, Leu NA, Bale TL (2015) Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Nat Acad Sci 112:13699–13704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zheng P, Schramm RD, Latham KE (2005) Developmental regulation and in vitro culture effects on expression of DNA repair and cell cycle checkpoint control genes in rhesus monkey oocytes and embryos. Biol Reprod 72:1359–1369

    Article  CAS  PubMed  Google Scholar 

  122. Liu W-M, Pang RTK, Chiu PCN, Wong BPC, Lao K, Lee K-F, Yeung WSB (2012) Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci U S A 109:490–494

    Article  CAS  PubMed  Google Scholar 

  123. Gawecka JE, Marh J, Ortega M, Yamauchi Y, Ward MA, Ward WS (2013) Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development. PLoS One 8:e56385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Di Giacomo M, Barchi M, Baudat F, Edelmann W, Keeney S, Jasin M (2005) Distinct DNA-damage-dependent and -independent responses drive the loss of oocytes in recombination-defective mouse mutants. Proc Nat Acad Sci U S A 102:737–742

    Article  CAS  Google Scholar 

  125. Subba Rao K (2007) Mechanisms of disease: DNA repair defects and neurological disease. Nat Clin Pract Neuro 3:162–172

    Article  CAS  Google Scholar 

  126. O’Driscoll M, Jeggo PA (2006) The role of double-strand break repair - insights from human genetics. Nat Rev Genet 7:45–54

    Article  PubMed  CAS  Google Scholar 

  127. Beaujean N (2014) Epigenetics, embryo quality and developmental potential. Reprod Fertil Dev 27:53–62

    Article  PubMed  CAS  Google Scholar 

  128. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311

    CAS  PubMed  Google Scholar 

  129. Meng S, Lin L, Lama S, Qiao M, Tuor UI (2009) Cerebral expression of DNA repair protein, Ku70, and its association with cell proliferation following cerebral hypoxia-ischemia in neonatal rats. Int J Dev Neurosci 27:129–134

    Article  CAS  PubMed  Google Scholar 

  130. Wang S, Kou Z, Jing Z, Zhang Y, Guo X, Dong M, Wilmut I, Gao S (2010) Proteome of mouse oocytes at different developmental stages. Proc Natl Acad Sci U S A 107:17639–17644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kocabas AM, Crosby J, Ross PJ, Otu HH, Beyhan Z, Can H, Tam W-L, Rosa GJM, Halgren RG, Lim B, Fernandez E, Cibelli JB (2006) The transcriptome of human oocytes. Proc Nat Acad Sci 103:14027–14032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Oberle C, Blattner C (2010) Regulation of the DNA damage response to DSBs by post-translational modifications. Curr Genomics 11:184–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Martin JH, Nixon B, Lord T, Bromfield EG, Aitken RJ (2016) Identification of a key role for permeability glycoprotein in enhancing the cellular defense mechanisms of fertilized oocytes. Dev Biol 417:63–76

    Article  CAS  PubMed  Google Scholar 

  134. Martin JH, Bromfield EG, Aitken RJ, Lord T, Nixon B (2016) Data on the concentrations of etoposide, PSC833, BAPTA-AM, and cycloheximide that do not compromise the vitality of mature mouse oocytes, parthenogencially activated and fertilized embryos. Data Brief 8:1215–1220

    Article  PubMed  PubMed Central  Google Scholar 

  135. Powell MD, Manandhar G, Spate L, Sutovsky M, Zimmerman S, Sachdev SC, Hannink M, Prather RS, Sutovsky P (2010) Discovery of putative oocyte quality markers by comparative ExacTag proteomics. Proteomics Clin Appl 4:337–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Jaroudi S, Kakourou G, Cawood S, Doshi A, Ranieri DM, Serhal P, Harper JC, SenGupta SB (2009) Expression profiling of DNA repair genes in human oocytes and blastocysts using microarrays. Hum Reprod 24:2649–2655

    Article  CAS  PubMed  Google Scholar 

  137. Harrouk W, Codrington A, Vinson R, Robaire B, Hales BF (2000) Paternal exposure to cyclophosphamide induces DNA damage and alters the expression of DNA repair genes in the rat preimplantation embryo. Mutat Res 461:229–241

    Article  CAS  PubMed  Google Scholar 

  138. Zuelke KA, Jeffay SC, Zucker RM, Perreault SD (2003) Glutathione (GSH) concentrations vary with the cell cycle in maturing hamster oocytes, zygotes, and pre-implantation stage embryos. Mol Reprod Dev 64:106–112

    Article  PubMed  Google Scholar 

  139. Nakamura BN, Fielder TJ, Hoang YD, Lim J, McConnachie LA, Kavanagh TJ, Luderer U (2011) Lack of maternal glutamate cysteine ligase modifier subunit (Gclm) decreases oocyte glutathione concentrations and disrupts preimplantation development in mice. Endocrinology 152:2806–2815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Anifandis G, Messini CI, Dafopoulos K, Messinis IE (2015) Genes and conditions controlling mammalian pre- and post-implantation embryo development. Curr Genomics 16:32–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Shao GB, Ding HM, Gong AH (2008) Role of histone methylation in zygotic genome activation in the preimplantation mouse embryo. In Vitro Cell Dev Biol Anim 44:115–120

    Article  CAS  PubMed  Google Scholar 

  142. Wang J, Zhang M, Zhang Y, Kou Z, Han Z, Chen DY, Sun QY, Gao S (2010) The histone demethylase JMJD2C is stage-specifically expressed in preimplantation mouse embryos and is required for embryonic development. Biol Reprod 82:105–111

    Article  CAS  PubMed  Google Scholar 

  143. Oda H, Okamoto I, Murphy N, Chu J, Price SM, Shen MM, Torres-Padilla ME, Heard E, Reinberg D (2009) Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development. Mol Cell Biol 29:2278–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Schneider R, Grosschedl R (2007) Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 21:3027–3043

    Article  CAS  PubMed  Google Scholar 

  145. Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241:172–182

    Article  CAS  PubMed  Google Scholar 

  146. Santos F, Dean W (2004) Epigenetic reprogramming during early development in mammals. Reproduction 127:643–651

    Article  CAS  PubMed  Google Scholar 

  147. Peterson CL, Laniel MA (2004) Histones and histone modifications. Curr Biol 14:R546–R551

    Article  CAS  PubMed  Google Scholar 

  148. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  149. Wossidlo M, Arand J, Sebastiano V, Lepikhov K, Boiani M, Reinhardt R, Scholer H, Walter J (2010) Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO J 29:1877–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Nixon B, Stanger SJ, Mihalas BP, Reilly JN, Anderson AL, Tyagi S, Holt JE, McLaughlin EA (2015) The microRNA signature of mouse spermatozoa is substantially modified during epididymal maturation. Biol Reprod 93:91

    Article  PubMed  CAS  Google Scholar 

  151. Reilly JN, McLaughlin EA, Stanger SJ, Anderson AL, Hutcheon K, Church K, Mihalas BP, Tyagi S, Holt JE, Eamens AL et al (2016) Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome. Sci Rep 6:31794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wu Q, Song R, Ortogero N, Zheng H, Evanoff R, Small CL, Griswold MD, Namekawa SH, Royo H, Turner JM et al (2012) The RNase III enzyme DROSHA is essential for MicroRNA production and spermatogenesis. J Biol Chem 287:25173–25190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yamauchi Y, Shaman JA, Ward WS (2011) Non-genetic contributions of the sperm nucleus to embryonic development. Asian J Androl 13:31–35

    Article  CAS  PubMed  Google Scholar 

  154. Krawetz SA (2005) Paternal contribution: new insights and future challenges. Nat Rev Genet 6:633–642

    Article  CAS  PubMed  Google Scholar 

  155. Roepke TA, Hamdoun AM, Cherr GN (2006) Increase in multidrug transport activity is associated with oocyte maturation in sea stars. Dev Growth Differ 48:559–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Elbling L, Berger W, Rehberger A, Waldhor T, Micksche M (1993) P-glycoprotein regulates chemosensitivity in early developmental stages of the mouse. FASEB J 7:1499–1506

    CAS  PubMed  Google Scholar 

  157. Hamdoun AM, Cherr GN, Roepke TA, Epel D (2004) Activation of multidrug efflux transporter activity at fertilization in sea urchin embryos (Strongylocentrotus purpuratus). Dev Biol 276:452–462

    Article  CAS  PubMed  Google Scholar 

  158. Mechetner E, Kyshtoobayeva A, Zonis S, Kim H, Stroup R, Garcia R, Parker RJ, Fruehauf JP (1998) Levels of multidrug resistance (MDR1) P-glycoprotein expression by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin Cancer Res 4:389–398

    CAS  PubMed  Google Scholar 

  159. Idriss HT, Hannun YA, Boulpaep E, Basavappa S (2000) Regulation of volume-activated chloride channels by P-glycoprotein: phosphorylation has the final say! J Physiol 524:629–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lelong-Rebel IH, Cardarelli CO (2005) Differential phosphorylation patterns of P-glycoprotein reconstituted into a proteoliposome system: insight into additional unconventional phosphorylation sites. Anticancer Res 25:3925–3935

    CAS  PubMed  Google Scholar 

  161. Vanoye CG, Castro AF, Pourcher T, Reuss L, Altenberg GA (1999) Phosphorylation of P-glycoprotein by PKA and PKC modulates swelling-activated Cl- currents. Am J Physiol 276:C370–C378

    CAS  PubMed  Google Scholar 

  162. Kfir-Erenfeld S, Sionov RV, Spokoini R, Cohen O, Yefenof E (2010) Protein kinase networks regulating glucocorticoid-induced apoptosis of hematopoietic cancer cells: fundamental aspects and practical considerations. Leuk Lymphoma 51:1968–2005

    Article  CAS  PubMed  Google Scholar 

  163. Mori M, Kasa S, Isozaki Y, Kamori T, Yamaguchi S, Ueda S, Kuwano T, Eguchi M, Isayama K, Nishimura S et al (2013) Improvement of the cellular quality of cryopreserved bovine blastocysts accompanied by enhancement of the ATP-binding cassette sub-family B member 1 expression. Reprod Toxicol 35:17–24

    Article  CAS  PubMed  Google Scholar 

  164. Yokota K, Hirano T, Urata N, Yamauchi N, Hattori MA (2011) Upregulation of P-glycoprotein activity in porcine oocytes and granulosa cells during in vitro maturation. J Reprod Dev 57:322–326

    Article  CAS  PubMed  Google Scholar 

  165. Degtyareva NP, Chen L, Mieczkowski P, Petes TD, Doetsch PW (2008) Chronic oxidative DNA damage due to DNA repair defects causes chromosomal instability in Saccharomyces cerevisiae. Mol Cell Biol 28:5432–5445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Aitken RJ, Findlay JK, Hutt KJ, Kerr JB (2011) Apoptosis in the germ line. Reproduction 141:139–150

    Article  CAS  PubMed  Google Scholar 

  167. Hutt KJ (2015) The role of BH3-only proteins in apoptosis within the ovary. Reproduction 149:R81–R89

    Article  CAS  PubMed  Google Scholar 

  168. Reynaud K, Driancourt MA (2000) Oocyte attrition. Mol Cell Endocrinol 163:101–108

    Article  CAS  PubMed  Google Scholar 

  169. Grive KJ, Freiman RN (2015) The developmental origins of the mammalian ovarian reserve. Development 142:2554–2563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Pangas SA (2012) Regulation of the ovarian reserve by members of the transforming growth factor beta family. Mol Reprod Dev 79:666–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wood MA, Rajkovic A (2013) Genomic markers of ovarian reserve. Semin Reprod Med 31:399–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. deSouza N, Reiken S, Ondrias K, Yang Y-M, Matkovich S, Marks AR (2002) Protein kinase A and two phosphatases are components of the inositol 1,4,5-trisphosphate receptor macromolecular signaling complex. J Biol Chem 277:39397–39400

    Article  CAS  PubMed  Google Scholar 

  173. Kalive M, Faust JJ, Koeneman BA, Capco DG (2010) Involvement of the PKC family in regulation of early development. Mol Reprod Dev 77:95–104

    CAS  PubMed  Google Scholar 

  174. Vermassen E, Fissore RA, Nadif Kasri N, Vanderheyden V, Callewaert G, Missiaen L, Parys JB, De Smedt H (2004) Regulation of the phosphorylation of the inositol 1,4,5-trisphosphate receptor by protein kinase C. Biochem Biophys Res Commun 319:888–893

    Article  CAS  PubMed  Google Scholar 

  175. Gangeswaran R, Jones KT (1997) Unique protein kinase C profile in mouse oocytes: lack of calcium-dependent conventional isoforms suggested by rtPCR and Western blotting. FEBS Lett 412:309–312

    Article  CAS  PubMed  Google Scholar 

  176. Eliyahu E, Shalgi R (2002) A role for protein kinase C during rat egg activation. Biol Reprod 67:189–195

    Article  CAS  PubMed  Google Scholar 

  177. Fan H-Y, Tong C, Li M-Y, Lian L, Chen D-Y, Schatten H, Sun Q-Y (2002) Translocation of the classic protein kinase C isoforms in porcine oocytes: implications of protein kinase C involvement in the regulation of nuclear activity and cortical granule exocytosis. Exp Cell Res 277:183–191

    Article  CAS  PubMed  Google Scholar 

  178. Johnson J, Bierle BM, Gallicano GI, Capco DG (1998) Calcium/calmodulin-dependent protein kinase II and calmodulin: regulators of the meiotic spindle in mouse eggs. Dev Biol 204:464–477

    Article  CAS  PubMed  Google Scholar 

  179. Jones KT (2005) Mammalian egg activation: from Ca2+ spiking to cell cycle progression. Reproduction 130:813–823

    Article  CAS  PubMed  Google Scholar 

  180. Madgwick S, Levasseur M, Jones KT (2005) Calmodulin-dependent protein kinase II, and not protein kinase C, is sufficient for triggering cell-cycle resumption in mammalian eggs. J Cell Sci 118:3849–3859

    Article  CAS  PubMed  Google Scholar 

  181. McCoy F, Darbandi R, Lee HC, Bharatham K, Moldoveanu T, Grace CR, Dodd K, Lin W, Chen SI, Tangallapally RP et al (2013) Metabolic activation of CaMKII by coenzyme A. Mol Cell 52:325–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Tong C, Fan HY, Lian L, Li SW, Chen DY, Schatten H, Sun QY (2002) Polo-like kinase-1 is a pivotal regulator of microtubule assembly during mouse oocyte meiotic maturation, fertilization, and early embryonic mitosis. Biol Reprod 67:546–554

    Article  CAS  PubMed  Google Scholar 

  183. Jia J-L, Han Y-H, Kim H-C, Ahn M, Kwon J-W, Luo Y, Gunasekaran P, Lee S-J, Lee KS, Kyu Bang J et al (2015) Structural basis for recognition of Emi2 by Polo-like kinase 1 and development of peptidomimetics blocking oocyte maturation and fertilization. Sci Rep 5:14626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chang H-Y, Minahan K, Merriman JA, Jones KT (2009) Calmodulin-dependent protein kinase gamma 3 (CamKIIγ3) mediates the cell cycle resumption of metaphase II eggs in mouse. Development 136:4077–4081

    Article  CAS  PubMed  Google Scholar 

  185. Kline D, Mehlmann L, Fox C, Terasaki M (1999) The cortical endoplasmic reticulum (ER) of the mouse egg: localization of ER clusters in relation to the generation of repetitive calcium waves. Dev Biol 215:431–442

    Article  CAS  PubMed  Google Scholar 

  186. Sun QY, Wu GM, Lai L, Bonk A, Cabot R, Park KW, Day BN, Prather RS, Schatten H (2002) Regulation of mitogen-activated protein kinase phosphorylation, microtubule organization, chromatin behavior, and cell cycle progression by protein phosphatases during pig oocyte maturation and fertilization in vitro. Biol Reprod 66:580–588

    Article  CAS  PubMed  Google Scholar 

  187. Malathi K, Kohyama S, Ho M, Soghoian D, Li X, Silane M, Berenstein A, Jayaraman T (2003) Inositol 1,4,5-trisphosphate receptor (type 1) phosphorylation and modulation by Cdc2. J Cell Biochem 90:1186–1196

    Article  CAS  PubMed  Google Scholar 

  188. Singleton PA, Bourguignon LY (2002) CD44v10 interaction with Rho-kinase (ROK) activates inositol 1,4,5-triphosphate (IP3) receptor-mediated Ca2+ signaling during hyaluronan (HA)-induced endothelial cell migration. Cell Motil Cytoskeleton 53:293–316

    Article  CAS  PubMed  Google Scholar 

  189. Lu DP, Tian L, O’Neill C, King NJ (2002) Regulation of cellular adhesion molecule expression in murine oocytes, peri-implantation and post-implantation embryos. Cell Res 12:373–383

    Article  PubMed  Google Scholar 

  190. Yoshida M, Horiuchi Y, Sensui N, Morisawa M (2003) Signaling pathway from [Ca2+]i transients to ooplasmic segregation involves small GTPase rho in the ascidian egg. Dev Growth Differ 45:275–281

    Article  CAS  PubMed  Google Scholar 

  191. Ferris CD, Huganir RL, Bredt DS, Cameron AM, Snyder SH (1991) Inositol trisphosphate receptor: phosphorylation by protein kinase C and calcium calmodulin-dependent protein kinases in reconstituted lipid vesicles. Proc Natl Acad Sci U S A 88:2232–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Koga T, Yoshida Y, Cai JQ, Islam MO, Imai S (1994) Purification and characterization of 240-kDa cGMP-dependent protein kinase substrate of vascular smooth muscle. Close resemblance to inositol 1,4,5-trisphosphate receptor. J Biol Chem 269:11640–11647

    CAS  PubMed  Google Scholar 

  193. Jayaraman T, Ondrias K, Ondriasova E, Marks AR (1996) Regulation of the inositol 1,4,5-trisphosphate receptor by tyrosine phosphorylation. Science 272:1492–1494

    Article  CAS  PubMed  Google Scholar 

  194. Yokoyama K, Su IH, Tezuka T, Yasuda T, Mikoshiba K, Tarakhovsky A, Yamamoto T (2002) BANK regulates BCR-induced calcium mobilization by promoting tyrosine phosphorylation of IP(3) receptor. EMBO J 21:83–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Khan MT, Wagner L 2nd, Yule DI, Bhanumathy C, Joseph SK (2006) Akt kinase phosphorylation of inositol 1,4,5-trisphosphate receptors. J Biol Chem 281:3731–3737

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the editorial advice provided by Prof. Eileen McLaughlin, Dr. Tessa Lord and Mrs. Aleona Swegen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacinta H. Martin.

Ethics declarations

Conflict of interest

The authors have nothing to declare.

Funding

This work was supported by the University of Newcastle’s Priority Research Center for Reproductive Science. Jacinta Martin is a recipient of an Australian Postgraduate Award (APA).

Additional information

R. J. Aitken and B. Nixon contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, J.H., Bromfield, E.G., Aitken, R.J. et al. Biochemical alterations in the oocyte in support of early embryonic development. Cell. Mol. Life Sci. 74, 469–485 (2017). https://doi.org/10.1007/s00018-016-2356-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2356-1

Keywords

Navigation