Skip to main content
Log in

Is hepatic lipogenesis fundamental for NAFLD/NASH? A focus on the nuclear receptor coactivator PGC-1β

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Non-alcoholic fatty liver diseases are the hepatic manifestation of metabolic syndrome. According to the classical pattern of NAFLD progression, de novo fatty acid synthesis has been incriminated in NAFLD progression. However, this hypothesis has been challenged by the re-evaluation of NAFLD development mechanisms together with the description of the role of lipogenic genes in NAFLD and with the recent observation that PGC-1β, a nuclear receptor/transcription factor coactivator involved in the transcriptional regulation of lipogenesis, displays protective effects against NAFLD/NASH progression. In this review, we focus on the implication of lipogenesis and triglycerides synthesis on the development of non-alcoholic fatty liver diseases and discuss the involvement of these pathways in the protective role of PGC-1β toward these hepatic manifestations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

NAFLD:

Non-alcoholic fatty liver diseases

FA:

Fatty acid

TG:

Triglycerides

PGC-1β:

Peroxisome proliferator-activated receptor gamma coactivator 1β

LXR:

Liver X receptor

SREBP-1c:

Sterol regulatory element binding protein 1c

ChREBP:

Carbohydrate responsive element binding protein

MCD:

Methionine/choline deficient diet

HFD:

High fat diet

NASH:

Non alcoholic steatohepatitis

NPC1L1:

Niemann–Pick C1-like 1

HSC:

Hepatic stellate cell

TNFα:

Tumor necrosis factor α

TGF-1β:

Transforming growth factor-1 β

COL1A1:

Collagen type 1α1

α-SMA:

α-Smooth muscle actin

TLR:

Toll-like receptor

PAMP:

Pathogen-associated molecular patterns

DAMP:

Damage-associated molecular patterns

HMGB1:

High mobility group box 1

ROS:

Reactive oxygen species

CPT1:

Carnitine palmitoyl transferase 1

mtDNA:

Mitochondrial DNA

ACL:

ATP citrate lyase

ACC:

Acetyl-CoA carboxylase

FAS:

Fatty acid synthase

ELOVL:

Elongation of very long chain fatty acids proteins

SCD1:

Stearoyl-CoA desaturase 1

GPAT:

Glycerol-3-phosphate acyl transferase

LPA:

Lysophosphatidic acid

PA:

Phosphatidic acid

AGPAT:

1-Acylglycerol-3-phosphate acyltransferase

DGAT:

Diacylglycerol acyltransferase

PRC:

PGC-1-related coactivator

NRF-2:

Nuclear respiratory factor-2

PPARα:

Peroxisome proliferator-activated receptor α

FoxO2:

Forkhead box O2

VLDL:

Very low-density lipoprotein

References

  1. Marchesini G, Marzocchi R, Agostini F, Bugianesi E (2005) Nonalcoholic fatty liver disease and the metabolic syndrome. Curr Opin Lipidol 16:421–427

    Article  CAS  PubMed  Google Scholar 

  2. Day CP, James OF (1998) Steatohepatitis: a tale of two “hits”? Gastroenterology 114:842–845

    Article  CAS  PubMed  Google Scholar 

  3. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115:1343–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tilg H, Moschen AR (2010) Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52:1836–1846

    Article  CAS  PubMed  Google Scholar 

  5. Li ZZ, Berk M, McIntyre TM, Feldstein AE (2009) Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-CoA desaturase. J Biol Chem 284:5637–5644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yamaguchi K, Yang L, McCall S, Huang J, Yu XX, Pandey SK et al (2007) Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45:1366–1374

    Article  CAS  PubMed  Google Scholar 

  7. Lin J, Yang R, Tarr PT, Wu PH, Handschin C, Li S et al (2005) Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP. Cell 120:261–273

    Article  CAS  PubMed  Google Scholar 

  8. Chambers KT, Chen Z, Lai L, Leone TC, Towle HC, Kralli A et al (2013) PGC-1beta and ChREBP partner to cooperatively regulate hepatic lipogenesis in a glucose concentration-dependent manner. Mol Metab 2:194–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bellafante E, Murzilli S, Salvatore L, Latorre D, Villani G, Moschetta A (2013) Hepatic-specific activation of peroxisome proliferator-activated receptor gamma coactivator-1beta protects against steatohepatitis. Hepatology 57:1343–1356

    Article  CAS  PubMed  Google Scholar 

  10. Marchesini G, Brizi M, Morselli-Labate AM, Bianchi G, Bugianesi E, McCullough AJ et al (1999) Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 107:450–455

    Article  CAS  PubMed  Google Scholar 

  11. Expert Panel on Detection EaToHBCiA (2001) Executive summary of the third report of The National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 285:2486–2497

    Article  Google Scholar 

  12. Unger RH, Clark GO, Scherer PE, Orci L (2010) Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta 1801:209–214

    Article  CAS  PubMed  Google Scholar 

  13. Postic C, Girard J (2008) Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 118:829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ioannou GN, Morrow OB, Connole ML, Lee SP (2009) Association between dietary nutrient composition and the incidence of cirrhosis or liver cancer in the US population. Hepatology 50:175–184

    Article  CAS  PubMed  Google Scholar 

  15. Musso G, Gambino R, De MF, Cassader M, Rizzetto M, Durazzo M et al (2003) Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology 37:909–916

    Article  CAS  PubMed  Google Scholar 

  16. Yasutake K, Nakamuta M, Shima Y, Ohyama A, Masuda K, Haruta N et al (2009) Nutritional investigation of non-obese patients with non-alcoholic fatty liver disease: the significance of dietary cholesterol. Scand J Gastroenterol 44:471–477

    Article  CAS  PubMed  Google Scholar 

  17. Puri P, Baillie RA, Wiest MM, Mirshahi F, Choudhury J, Cheung O et al (2007) A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46:1081–1090

    Article  CAS  PubMed  Google Scholar 

  18. Caballero F, Fernandez A, De Lacy AM, Fernandez-Checa JC, Caballeria J, Garcia-Ruiz C (2009) Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH. J Hepatol 50:789–796

    Article  CAS  PubMed  Google Scholar 

  19. Yoneda M, Fujita K, Nozaki Y, Endo H, Takahashi H, Hosono K et al (2010) Efficacy of ezetimibe for the treatment of non-alcoholic steatohepatitis: an open-label, pilot study. Hepatol Res 40:566–573

    Article  CAS  PubMed  Google Scholar 

  20. Park H, Shima T, Yamaguchi K, Mitsuyoshi H, Minami M, Yasui K et al (2011) Efficacy of long-term ezetimibe therapy in patients with nonalcoholic fatty liver disease. J Gastroenterol 46:101–107

    Article  CAS  PubMed  Google Scholar 

  21. Subramanian S, Goodspeed L, Wang S, Kim J, Zeng L, Ioannou GN et al (2011) Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice. J Lipid Res 52:1626–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Van Rooyen DM, Larter CZ, Haigh WG, Yeh MM, Ioannou G, Kuver R et al (2011) Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. Gastroenterology 141(1393–403):1403

    Google Scholar 

  23. Matsuoka M, Tsukamoto H (1990) Stimulation of hepatic lipocyte collagen production by Kupffer cell-derived transforming growth factor beta: implication for a pathogenetic role in alcoholic liver fibrogenesis. Hepatology 11:599–605

    Article  CAS  PubMed  Google Scholar 

  24. Tosello-Trampont AC, Landes SG, Nguyen V, Novobrantseva TI, Hahn YS (2012) Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-alpha production. J Biol Chem 287:40161–40172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M (2007) Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol 47:571–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maher JJ, Leon P, Ryan JC (2008) Beyond insulin resistance: innate immunity in nonalcoholic steatohepatitis. Hepatology 48:670–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gressner AM, Bachem MG (1990) Cellular sources of noncollagenous matrix proteins: role of fat-storing cells in fibrogenesis. Semin Liver Dis 10:30–46

    Article  CAS  PubMed  Google Scholar 

  28. Rockey DC, Boyles JK, Gabbiani G, Friedman SL (1992) Rat hepatic lipocytes express smooth muscle actin upon activation in vivo and in culture. J Submicrosc Cytol Pathol 24:193–203

    CAS  PubMed  Google Scholar 

  29. Bianchi ME (2009) HMGB1 loves company. J Leukoc Biol 86:573–576

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W et al (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schwabe RF, Seki E, Brenner DA (2006) Toll-like receptor signaling in the liver. Gastroenterology 130:1886–1900

    Article  CAS  PubMed  Google Scholar 

  32. Miura K, Yang L, van Rooijen N, Brenner DA, Ohnishi H, Seki E (2013) Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology 57:577–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ye D, Li FY, Lam KS, Li H, Jia W, Wang Y et al (2012) Toll-like receptor-4 mediates obesity-induced non-alcoholic steatohepatitis through activation of X-box binding protein-1 in mice. Gut 61:1058–1067

    Article  CAS  PubMed  Google Scholar 

  34. Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, Ohnishi H et al (2010) Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology 139:323–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brun P, Castagliuolo I, Di Leo V, Buda A, Pinzani M, Palu G et al (2007) Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 292:G518–G525

    Article  CAS  PubMed  Google Scholar 

  36. Kubes P, Mehal WZ (2012) Sterile inflammation in the liver. Gastroenterology 143:1158–1172

    Article  CAS  PubMed  Google Scholar 

  37. Stanton MC, Chen SC, Jackson JV, Rojas-Triana A, Kinsley D, Cui L et al (2011) Inflammatory Signals shift from adipose to liver during high fat feeding and influence the development of steatohepatitis in mice. J Inflamm (Lond) 8:8

    Article  CAS  Google Scholar 

  38. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:3015–3025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang S, Rutkowsky JM, Snodgrass RG, Ono-Moore KD, Schneider DA, Newman JW et al (2012) Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J Lipid Res 53:2002–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leroux A, Ferrere G, Godie V, Cailleux F, Renoud ML, Gaudin F et al (2012) Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis. J Hepatol 57:141–149

    Article  CAS  PubMed  Google Scholar 

  41. Teratani T, Tomita K, Suzuki T, Oshikawa T, Yokoyama H, Shimamura K et al (2012) A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells. Gastroenterology 142:152–164

    Article  CAS  PubMed  Google Scholar 

  42. Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK et al (2001) Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120:1183–1192

    Article  CAS  PubMed  Google Scholar 

  43. Paterson JM, Morton NM, Fievet C, Kenyon CJ, Holmes MC, Staels B et al (2004) Metabolic syndrome without obesity: hepatic overexpression of 11beta-hydroxysteroid dehydrogenase type 1 in transgenic mice. Proc Natl Acad Sci USA 101:7088–7093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Perez-Carreras M, Del HP, Martin MA, Rubio JC, Martin A, Castellano G et al (2003) Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology 38:999–1007

    Article  CAS  PubMed  Google Scholar 

  45. Caldwell SH, Swerdlow RH, Khan EM, Iezzoni JC, Hespenheide EE, Parks JK et al (1999) Mitochondrial abnormalities in non-alcoholic steatohepatitis. J Hepatol 31:430–434

    Article  CAS  PubMed  Google Scholar 

  46. Cortez-Pinto H, Chatham J, Chacko VP, Arnold C, Rashid A, Diehl AM (1999) Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: a pilot study. JAMA 282:1659–1664

    Article  CAS  PubMed  Google Scholar 

  47. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  48. Mailloux RJ, McBride SL, Harper ME (2013) Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem Sci 38:592–602

    Article  CAS  PubMed  Google Scholar 

  49. Begriche K, Igoudjil A, Pessayre D, Fromenty B (2006) Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion 6:1–28

    Article  CAS  PubMed  Google Scholar 

  50. Rolo AP, Teodoro JS, Palmeira CM (2012) Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med 52:59–69

    Article  CAS  PubMed  Google Scholar 

  51. Chen J, Schenker S, Frosto TA, Henderson GI (1998) Inhibition of cytochrome c oxidase activity by 4-hydroxynonenal (HNE). Role of HNE adduct formation with the enzyme subunits. Biochim Biophys Acta 1380:336–344

    Article  CAS  PubMed  Google Scholar 

  52. Chen J, Petersen DR, Schenker S, Henderson GI (2000) Formation of malondialdehyde adducts in livers of rats exposed to ethanol: role in ethanol-mediated inhibition of cytochrome c oxidase. Alcohol Clin Exp Res 24:544–552

    Article  CAS  PubMed  Google Scholar 

  53. Gao D, Wei C, Chen L, Huang J, Yang S, Diehl AM (2004) Oxidative DNA damage and DNA repair enzyme expression are inversely related in murine models of fatty liver disease. Am J Physiol Gastrointest Liver Physiol 287:G1070–G1077

    Article  CAS  PubMed  Google Scholar 

  54. Haque M, Sanyal AJ (2002) The metabolic abnormalities associated with non-alcoholic fatty liver disease. Best Pract Res Clin Gastroenterol 16:709–731

    Article  CAS  PubMed  Google Scholar 

  55. Pessayre D, Berson A, Fromenty B, Mansouri A (2001) Mitochondria in steatohepatitis. Semin Liver Dis 21:57–69

    Article  CAS  PubMed  Google Scholar 

  56. Pessayre D, Fromenty B, Mansouri A (2004) Mitochondrial injury in steatohepatitis. Eur J Gastroenterol Hepatol 16:1095–1105

    Article  CAS  PubMed  Google Scholar 

  57. Abu-Elheiga L, Jayakumar A, Baldini A, Chirala SS, Wakil SJ (1995) Human acetyl-CoA carboxylase: characterization, molecular cloning, and evidence for two isoforms. Proc Natl Acad Sci USA 92:4011–4015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abu-Elheiga L, Almarza-Ortega DB, Baldini A, Wakil SJ (1997) Human acetyl-CoA carboxylase 2. Molecular cloning, characterization, chromosomal mapping, and evidence for two isoforms. J Biol Chem 272:10669–10677

    Article  CAS  PubMed  Google Scholar 

  59. Abu-Elheiga L, Brinkley WR, Zhong L, Chirala SS, Woldegiorgis G, Wakil SJ (2000) The subcellular localization of acetyl-CoA carboxylase 2. Proc Natl Acad Sci USA 97:1444–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McGarry JD, Brown NF (1997) The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 244:1–14

    Article  CAS  PubMed  Google Scholar 

  61. Chirala SS, Wakil SJ (2004) Structure and function of animal fatty acid synthase. Lipids 39:1045–1053

    Article  CAS  PubMed  Google Scholar 

  62. Matsuzaka T, Shimano H, Yahagi N, Yoshikawa T, Amemiya-Kudo M, Hasty AH et al (2002) Cloning and characterization of a mammalian fatty acyl-CoA elongase as a lipogenic enzyme regulated by SREBPs. J Lipid Res 43:911–920

    CAS  PubMed  Google Scholar 

  63. Moon YA, Shah NA, Mohapatra S, Warrington JA, Horton JD (2001) Identification of a mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins. J Biol Chem 276:45358–45366

    Article  CAS  PubMed  Google Scholar 

  64. Ntambi JM (1999) Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res 40:1549–1558

    CAS  PubMed  Google Scholar 

  65. Kaestner KH, Ntambi JM, Kelly TJ Jr, Lane MD (1989) Differentiation-induced gene expression in 3T3-L1 preadipocytes. A second differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem 264:14755–14761

    CAS  PubMed  Google Scholar 

  66. Miyazaki M, Jacobson MJ, Man WC, Cohen P, Asilmaz E, Friedman JM et al (2003) Identification and characterization of murine SCD4, a novel heart-specific stearoyl-CoA desaturase isoform regulated by leptin and dietary factors. J Biol Chem 278:33904–33911

    Article  CAS  PubMed  Google Scholar 

  67. Ntambi JM, Buhrow SA, Kaestner KH, Christy RJ, Sibley E, Kelly TJ Jr et al (1988) Differentiation-induced gene expression in 3T3-L1 preadipocytes. Characterization of a differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem 263:17291–17300

    CAS  PubMed  Google Scholar 

  68. Zheng Y, Prouty SM, Harmon A, Sundberg JP, Stenn KS, Parimoo S (2001) Scd3–a novel gene of the stearoyl-CoA desaturase family with restricted expression in skin. Genomics 71:182–191

    Article  CAS  PubMed  Google Scholar 

  69. Ganesh BB, Wang P, Kim JH, Black TM, Lewin TM, Fiedorek FT Jr et al (1999) Rat sn-glycerol-3-phosphate acyltransferase: molecular cloning and characterization of the cDNA and expressed protein. Biochim Biophys Acta 1439:415–423

    Article  Google Scholar 

  70. Cao J, Li JL, Li D, Tobin JF, Gimeno RE (2006) Molecular identification of microsomal acyl-CoA:glycerol-3-phosphate acyltransferase, a key enzyme in de novo triacylglycerol synthesis. Proc Natl Acad Sci USA 103:19695–19700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Harada N, Hara S, Yoshida M, Zenitani T, Mawatari K, Nakano M et al (2007) Molecular cloning of a murine glycerol-3-phosphate acyltransferase-like protein 1 (xGPAT1). Mol Cell Biochem 297:41–51

    Article  CAS  PubMed  Google Scholar 

  72. Wang S, Lee DP, Gong N, Schwerbrock NM, Mashek DG, Gonzalez-Baro MR et al (2007) Cloning and functional characterization of a novel mitochondrial N-ethylmaleimide-sensitive glycerol-3-phosphate acyltransferase (GPAT2). Arch Biochem Biophys 465:347–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen YQ, Kuo MS, Li S, Bui HH, Peake DA, Sanders PE et al (2008) AGPAT6 is a novel microsomal glycerol-3-phosphate acyltransferase. J Biol Chem 283:10048–10057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nagle CA, Vergnes L, Dejong H, Wang S, Lewin TM, Reue K et al (2008) Identification of a novel sn-glycerol-3-phosphate acyltransferase isoform, GPAT4, as the enzyme deficient in Agpat6−/− mice. J Lipid Res 49:823–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lewin TM, Schwerbrock NM, Lee DP, Coleman RA (2004) Identification of a new glycerol-3-phosphate acyltransferase isoenzyme, mtGPAT2, in mitochondria. J Biol Chem 279:13488–13495

    Article  CAS  PubMed  Google Scholar 

  76. Gimeno RE, Cao J (2008) Thematic review series: glycerolipids. Mammalian glycerol-3-phosphate acyltransferases: new genes for an old activity. J Lipid Res 49:2079–2088

    Article  CAS  PubMed  Google Scholar 

  77. Agarwal AK, Barnes RI, Garg A (2006) Functional characterization of human 1-acylglycerol-3-phosphate acyltransferase isoform 8: cloning, tissue distribution, gene structure, and enzymatic activity. Arch Biochem Biophys 449:64–76

    Article  CAS  PubMed  Google Scholar 

  78. Agarwal AK, Sukumaran S, Bartz R, Barnes RI, Garg A (2007) Functional characterization of human 1-acylglycerol-3-phosphate-O-acyltransferase isoform 9: cloning, tissue distribution, gene structure, and enzymatic activity. J Endocrinol 193:445–457

    Article  CAS  PubMed  Google Scholar 

  79. Leung DW (2001) The structure and functions of human lysophosphatidic acid acyltransferases. Front Biosci 6:D944–D953

    Article  CAS  PubMed  Google Scholar 

  80. Li D, Yu L, Wu H, Shan Y, Guo J, Dang Y et al (2003) Cloning and identification of the human LPAAT-zeta gene, a novel member of the lysophosphatidic acid acyltransferase family. J Hum Genet 48:438–442

    Article  CAS  PubMed  Google Scholar 

  81. Sukumaran S, Barnes RI, Garg A, Agarwal AK (2009) Functional characterization of the human 1-acylglycerol-3-phosphate-O-acyltransferase isoform 10/glycerol-3-phosphate acyltransferase isoform 3. J Mol Endocrinol 42:469–478

    Article  CAS  PubMed  Google Scholar 

  82. Tang W, Yuan J, Chen X, Gu X, Luo K, Li J et al (2006) Identification of a novel human lysophosphatidic acid acyltransferase, LPAAT-theta, which activates mTOR pathway. J Biochem Mol Biol 39:626–635

    Article  CAS  PubMed  Google Scholar 

  83. Ye GM, Chen C, Huang S, Han DD, Guo JH, Wan B et al (2005) Cloning and characterization a novel human 1-acyl-sn-glycerol-3-phosphate acyltransferase gene AGPAT7. DNA Seq 16:386–390

    Article  CAS  PubMed  Google Scholar 

  84. Cortes VA, Curtis DE, Sukumaran S, Shao X, Parameswara V, Rashid S et al (2009) Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy. Cell Metab 9:165–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Eberhardt C, Gray PW, Tjoelker LW (1997) Human lysophosphatidic acid acyltransferase. cDNA cloning, expression, and localization to chromosome 9q34.3. J Biol Chem 272:20299–20305

    Article  CAS  PubMed  Google Scholar 

  86. Hollenback D, Bonham L, Law L, Rossnagle E, Romero L, Carew H et al (2006) Substrate specificity of lysophosphatidic acid acyltransferase beta—evidence from membrane and whole cell assays. J Lipid Res 47:593–604

    Article  CAS  PubMed  Google Scholar 

  87. Glosset JA (1996) A branched metabolic pathway in animal cells converts 2-monoacylglycerol into sn-1-stearoyl-2-arachidonoyl phosphatidylinositol and other phosphoglycerides. In: Gross RW (ed) Advances in lipobiology. Elsevier, St. Louis

    Google Scholar 

  88. Carman GM, Han GS (2009) Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis. J Biol Chem 284:2593–2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Coleman RA, Lee DP (2004) Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid Res 43:134–176

    Article  CAS  PubMed  Google Scholar 

  90. Cases S, Smith SJ, Zheng YW, Myers HM, Lear SR, Sande E et al (1998) Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA 95:13018–13023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Oelkers P, Behari A, Cromley D, Billheimer JT, Sturley SL (1998) Characterization of two human genes encoding acyl coenzyme A:cholesterol acyltransferase-related enzymes. J Biol Chem 273:26765–26771

    Article  CAS  PubMed  Google Scholar 

  92. Cases S, Stone SJ, Zhou P, Yen E, Tow B, Lardizabal KD et al (2001) Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J Biol Chem 276:38870–38876

    Article  CAS  PubMed  Google Scholar 

  93. Lardizabal KD, Mai JT, Wagner NW, Wyrick A, Voelker T, Hawkins DJ (2001) DGAT2 is a new diacylglycerol acyltransferase gene family: purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity. J Biol Chem 276:38862–38869

    Article  CAS  PubMed  Google Scholar 

  94. Carvalhana S, Machado MV, Cortez-Pinto H (2012) Improving dietary patterns in patients with nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care 15:468–473

    Article  CAS  PubMed  Google Scholar 

  95. Tiniakos DG, Vos MB, Brunt EM (2010) Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol 5:145–171

    Article  CAS  PubMed  Google Scholar 

  96. Li Z, Yang S, Lin H, Huang J, Watkins PA, Moser AB et al (2003) Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology 37:343–350

    Article  CAS  PubMed  Google Scholar 

  97. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS et al (2003) Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA 100:3077–3082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Farrell GC, van Rooijen D, Gan L, Chitturi S (2012) NASH is an inflammatory disorder: pathogenic, prognostic and therapeutic implications. Gut Liver 6:149–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Powell EE, Cooksley WG, Hanson R, Searle J, Halliday JW, Powell LW (1990) The natural history of nonalcoholic steatohepatitis: a follow-up study of forty-two patients for up to 21 years. Hepatology 11:74–80

    Article  PubMed  Google Scholar 

  100. Mao J, DeMayo FJ, Li H, Abu-Elheiga L, Gu Z, Shaikenov TE et al (2006) Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proc Natl Acad Sci USA 103:8552–8557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ (2001) Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291:2613–2616

    Article  CAS  PubMed  Google Scholar 

  102. Abu-Elheiga L, Oh W, Kordari P, Wakil SJ (2003) Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc Natl Acad Sci USA 100:10207–10212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chakravarthy MV, Pan Z, Zhu Y, Tordjman K, Schneider JG, Coleman T et al (2005) “New” hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 1:309–322

    Article  CAS  PubMed  Google Scholar 

  104. Matsuzaka T, Shimano H, Yahagi N, Kato T, Atsumi A, Yamamoto T et al (2007) Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat Med 13:1193–1202

    Article  CAS  PubMed  Google Scholar 

  105. Matsuzaka T, Atsumi A, Matsumori R, Nie T, Shinozaki H, Suzuki-Kemuriyama N et al (2012) Elovl6 promotes nonalcoholic steatohepatitis. Hepatology 56:2199–2208

    Article  CAS  PubMed  Google Scholar 

  106. Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS (2008) Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134:933–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Guo X, Li H, Xu H, Halim V, Zhang W, Wang H et al (2012) Palmitoleate induces hepatic steatosis but suppresses liver inflammatory response in mice. PLoS One 7:e39286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski CM, Yandell BS et al (2002) Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci USA 99:11482–11486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Miyazaki M, Flowers MT, Sampath H, Chu K, Otzelberger C, Liu X et al (2007) Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab 6:484–496

    Article  CAS  PubMed  Google Scholar 

  110. Cohen P, Miyazaki M, Socci ND, Hagge-Greenberg A, Liedtke W, Soukas AA et al (2002) Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 297:240–243

    Article  CAS  PubMed  Google Scholar 

  111. Dobrzyn P, Dobrzyn A, Miyazaki M, Cohen P, Asilmaz E, Hardie DG et al (2004) Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. Proc Natl Acad Sci USA 101:6409–6414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Binczek E, Jenke B, Holz B, Gunter RH, Thevis M, Stoffel W (2007) Obesity resistance of the stearoyl-CoA desaturase-deficient (scd1−/−) mouse results from disruption of the epidermal lipid barrier and adaptive thermoregulation. Biol Chem 388:405–418

    Article  CAS  PubMed  Google Scholar 

  113. Stone SJ, Myers HM, Watkins SM, Brown BE, Feingold KR, Elias PM et al (2004) Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J Biol Chem 279:11767–11776

    Article  CAS  PubMed  Google Scholar 

  114. Smith SJ, Cases S, Jensen DR, Chen HC, Sande E, Tow B et al (2000) Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat Genet 25:87–90

    Article  CAS  PubMed  Google Scholar 

  115. Yamaguchi K, Yang L, McCall S, Huang J, Yu XX, Pandey SK et al (2008) Diacylglycerol acyltranferase 1 anti-sense oligonucleotides reduce hepatic fibrosis in mice with nonalcoholic steatohepatitis. Hepatology 47:625–635

    Article  CAS  PubMed  Google Scholar 

  116. Nagaya T, Tanaka N, Suzuki T, Sano K, Horiuchi A, Komatsu M et al (2010) Down-regulation of SREBP-1c is associated with the development of burned-out NASH. J Hepatol 53:724–731

    Article  CAS  PubMed  Google Scholar 

  117. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839

    Article  CAS  PubMed  Google Scholar 

  118. Kressler D, Schreiber SN, Knutti D, Kralli A (2002) The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. J Biol Chem 277:13918–13925

    Article  CAS  PubMed  Google Scholar 

  119. Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM (2002) Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 277:1645–1648

    Article  CAS  PubMed  Google Scholar 

  120. Andersson U, Scarpulla RC (2001) Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells. Mol Cell Biol 21:3738–3749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Finck BN, Kelly DP (2006) PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116:615–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lin J, Tarr PT, Yang R, Rhee J, Puigserver P, Newgard CB et al (2003) PGC-1beta in the regulation of hepatic glucose and energy metabolism. J Biol Chem 278:30843–30848

    Article  CAS  PubMed  Google Scholar 

  123. Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A et al (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179–183

    Article  CAS  PubMed  Google Scholar 

  124. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370

    Article  PubMed  CAS  Google Scholar 

  125. Wolfrum C, Stoffel M (2006) Coactivation of Foxa2 through Pgc-1beta promotes liver fatty acid oxidation and triglyceride/VLDL secretion. Cell Metab 3:99–110

    Article  CAS  PubMed  Google Scholar 

  126. Schoonjans K, Staels B, Auwerx J (1996) Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res 37:907–925

    CAS  PubMed  Google Scholar 

  127. Hernandez C, Molusky M, Li Y, Li S, Lin JD (2010) Regulation of hepatic ApoC3 expression by PGC-1beta mediates hypolipidemic effect of nicotinic acid. Cell Metab 12:411–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lee JY, Moon JH, Park JS, Lee BW, Kang ES, Ahn CW et al (2011) Dietary oleate has beneficial effects on every step of non-alcoholic Fatty liver disease progression in a methionine- and choline-deficient diet-fed animal model. Diabetes Metab J 35:489–496

    Article  PubMed  PubMed Central  Google Scholar 

  129. Nagai Y, Yonemitsu S, Erion DM, Iwasaki T, Stark R, Weismann D et al (2009) The role of peroxisome proliferator-activated receptor gamma coactivator-1 beta in the pathogenesis of fructose-induced insulin resistance. Cell Metab 9:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chu K, Miyazaki M, Man WC, Ntambi JM (2006) Stearoyl-coenzyme A desaturase 1 deficiency protects against hypertriglyceridemia and increases plasma high-density lipoprotein cholesterol induced by liver X receptor activation. Mol Cell Biol 26:6786–6798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE et al (1998) Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 93:693–704

    Article  CAS  PubMed  Google Scholar 

  132. Beaven SW, Wroblewski K, Wang J, Hong C, Bensinger S, Tsukamoto H et al (2011) Liver X receptor signaling is a determinant of stellate cell activation and susceptibility to fibrotic liver disease. Gastroenterology 140:1052–1062

    Article  CAS  PubMed  Google Scholar 

  133. Liu Y, Han X, Bian Z, Peng Y, You Z, Wang Q et al (2012) Activation of liver X receptors attenuates endotoxin-induced liver injury in mice with nonalcoholic fatty liver disease. Dig Dis Sci 57:390–398

    Article  CAS  PubMed  Google Scholar 

  134. Wang YY, Dahle MK, Agren J, Myhre AE, Reinholt FP, Foster SJ et al (2006) Activation of the liver X receptor protects against hepatic injury in endotoxemia by suppressing Kupffer cell activation. Shock 25:141–146

    Article  CAS  PubMed  Google Scholar 

  135. Grefhorst A, Elzinga BM, Voshol PJ, Plosch T, Kok T, Bloks VW et al (2002) Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles. J Biol Chem 277:34182–34190

    Article  CAS  PubMed  Google Scholar 

  136. Archer A, Stolarczyk E, Doria ML, Helguero L, Domingues R, Howard JK et al (2013) LXR activation by GW3965 alters fat tissue distribution and adipose tissue inflammation in ob/ob female mice. J Lipid Res 54:1300–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. O’Callaghan BL, Koo SH, Wu Y, Freake HC, Towle HC (2001) Glucose regulation of the acetyl-CoA carboxylase promoter PI in rat hepatocytes. J Biol Chem 276:16033–16039

    Article  PubMed  Google Scholar 

  138. Rufo C, Teran-Garcia M, Nakamura MT, Koo SH, Towle HC, Clarke SD (2001) Involvement of a unique carbohydrate-responsive factor in the glucose regulation of rat liver fatty-acid synthase gene transcription. J Biol Chem 276:21969–21975

    Article  CAS  PubMed  Google Scholar 

  139. Denechaud PD, Bossard P, Lobaccaro JM, Millatt L, Staels B, Girard J et al (2008) ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver. J Clin Invest 118:956–964

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Benhamed F, Denechaud PD, Lemoine M, Robichon C, Moldes M, Bertrand-Michel J et al (2012) The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest 122:2176–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Pawlak M, Lefebvre P, Staels B (2015) Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 62:720–733

    Article  CAS  PubMed  Google Scholar 

  142. Miller CW, Ntambi JM (1996) Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression. Proc Natl Acad Sci USA 93:9443–9448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chakravarthy MV, Lodhi IJ, Yin L, Malapaka RR, Xu HE, Turk J et al (2009) Identification of a physiologically relevant endogenous ligand for PPARalpha in liver. Cell 138:476–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We apologize to our distinguished colleagues whose work has not been cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Moschetta.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Financial support

This work was funded by the Italian Ministry of University and Education (PRIN 2010FHH32M-002), the Italian Ministry of Health (Young Researchers Grant GR-2010-2314703), and Fondazione Umberto Veronesi (FUV).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ducheix, S., Vegliante, M.C., Villani, G. et al. Is hepatic lipogenesis fundamental for NAFLD/NASH? A focus on the nuclear receptor coactivator PGC-1β. Cell. Mol. Life Sci. 73, 3809–3822 (2016). https://doi.org/10.1007/s00018-016-2331-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2331-x

Keywords

Navigation