Skip to main content

Advertisement

Log in

Polyglutamine androgen receptor-mediated neuromuscular disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

An expanded polyglutamine (polyQ) tract at the amino-terminus of the androgen receptor (AR) confers toxic properties responsible for neuronal and non-neuronal degeneration in spinal and bulbar muscular atrophy (SBMA), one of nine polyQ expansion diseases. Both lower motor neurons and peripheral tissues, including skeletal muscle, are affected, supporting the notion that SBMA is not a pure motor neuron disease but a degenerative disorder of the neuromuscular system. Here, we review experimental evidence demonstrating both nerve and muscle degeneration in SBMA model systems and patients. We propose that polyQ AR toxicity targets these components in a time-dependent fashion, with muscle pathology predominating early and motor neuron loss becoming more significant at late stages. This model of pathogenesis has important therapeutic implications, suggesting that symptoms arising from degeneration of nerve or muscle predominate at different points and that directed interventions targeting these components will be variably effective depending upon disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

SBMA:

Spinal and bulbar muscular atrophy

CAG:

Cytosine adenine guanine

PolyQ:

Polyglutamine

AR:

Androgen receptor

T:

Testosterone

DHT:

Dihydrotestosterone

NTD:

Amino-terminal domain

DBD:

DNA-binding domain

LBD:

Ligand-binding domain

AF-1/AF-2:

Activation function

Tau-1/Tau-5:

Transcription activation unit

SRC-1:

Steroid receptor coactivator-1

NLS:

Nuclear localization signal

PEST:

Proline, glutamic acid, serine, threonine

CBP:

c-AMP responsive element binding protein

Hsp:

Heat shock proteins

CHIP:

Carboxyl terminus of Hsc70-interacting protein

N/C interaction:

Amino- and carboxy-terminus interaction

Lys:

Lysine

Ser:

Serine

SIRT1:

Sirtuin 1

IGF-1:

Insulin-like growth factor-1

CNS:

Central nervous system

References

  1. Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621

    Article  CAS  PubMed  Google Scholar 

  2. La Spada AR et al (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352(6330):77–79

    Article  PubMed  Google Scholar 

  3. Kawahara H (1897) A family of progressive bulbar palsy. Aichi Med School J 16:3–4

    Google Scholar 

  4. Kennedy W, Alter M, Sung J (1968) Progressive proximal spinal and bulbar muscular atrophy of late onset. Neurology 18(7):671–680

    Article  CAS  PubMed  Google Scholar 

  5. Harding AE et al (1982) X-linked recessive bulbospinal neuronopathy: a report of ten cases. J Neurol Neurosurg Psychiatry 45(11):1012–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schmidt BJ et al (2002) Expression of X-linked bulbospinal muscular atrophy (Kennedy disease) in two homozygous women. Neurology 59(5):770–772

    Article  PubMed  Google Scholar 

  7. Sobue G et al (1993) Subclinical phenotypic expressions in heterozygous females of X-linked recessive bulbospinal neuronopathy. J Neurol Sci 117(1–2):74–78

    Article  CAS  PubMed  Google Scholar 

  8. Nagashima T et al (1988) Familial bulbo-spinal muscular atrophy associated with testicular atrophy and sensory neuropathy (Kennedy–Alter–Sung syndrome). Autopsy case report of two brothers. J Neurol Sci 87(2–3):141–152

    Article  CAS  PubMed  Google Scholar 

  9. Battaglia F et al (2003) Kennedy’s disease initially manifesting as an endocrine disorder. J Clin Neuromuscul Dis 4(4):165–167

    Article  CAS  PubMed  Google Scholar 

  10. Yu Z et al (2006) Androgen-dependent pathology demonstrates myopathic contribution to the Kennedy disease phenotype in a mouse knock-in model. J Clin Invest 116(10):2663–2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chevalier-Larsen ES et al (2004) Castration restores function and neurofilament alterations of aged symptomatic males in a transgenic mouse model of spinal and bulbar muscular atrophy. J Neurosci 24(20):4778–4786

    Article  CAS  PubMed  Google Scholar 

  12. Katsuno M et al (2002) Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Neuron 35(5):843–854

    Article  CAS  PubMed  Google Scholar 

  13. Fischbeck K et al (1986) Localization of the gene for X-linked spinal muscular atrophy. Neurology 36(12):1595–1598

    Article  CAS  PubMed  Google Scholar 

  14. Poletti A (2004) The polyglutamine tract of androgen receptor: from functions to dysfunctions in motor neurons. Front Neuroendocrinol 25:1–26

    Article  CAS  PubMed  Google Scholar 

  15. Clark P, Irvine R, Coetzee G (2003) The androgen receptor CAG repeat and prostate cancer risk. Methods Mol Med 81:255–266

    CAS  PubMed  Google Scholar 

  16. Davis-Dao C et al (2012) Shorter androgen receptor CAG repeat lengths associated with cryptorchidism risk among Hispanic white boys. J Clin Endocrinol Metab 97(3):E393–E399

    Article  CAS  PubMed  Google Scholar 

  17. Palazzolo I et al (2008) The role of the polyglutamine tract in androgen receptor. J Steroid Biochem Mol Biol 108(3–5):245–253

    Article  CAS  PubMed  Google Scholar 

  18. Chang C et al (1995) Androgen receptor: an overview. Crit Rev Eukaryot Gene Expr 5(2):97–125

    Article  CAS  PubMed  Google Scholar 

  19. Callewaert L, Van Tilborgh N, Claessens F (2006) Interplay between two hormone-independent activation domains in the androgen receptor. Cancer Res 66(1):543–553

    Article  CAS  PubMed  Google Scholar 

  20. Tan EM et al (2015) Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin 36(1):3–23

    Article  CAS  PubMed  Google Scholar 

  21. Christiaens V et al (2002) Characterization of the two coactivator-interacting surfaces of the androgen receptor and their relative role in transcriptional control. J Biol Chem 277(51):49230–49237

    Article  CAS  PubMed  Google Scholar 

  22. Callewaert L et al (2003) Implications of a polyglutamine tract in the function of the human androgen receptor. Biochem Biophys Res Commun 306(1):46–52

    Article  CAS  PubMed  Google Scholar 

  23. Bevan CL et al (1999) The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol Cell Biol 19(12):8383–8392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McCampbell A et al (2000) CREB-binding protein sequestration by expanded polyglutamine. Hum Mol Genet 9(4):2197–2202

    Article  CAS  PubMed  Google Scholar 

  25. Stenoien DL et al (1999) Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum Mol Genet 8(5):731–741

    Article  CAS  PubMed  Google Scholar 

  26. Rechsteiner M, Rogers SW (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 21(6):267–271

    Article  CAS  PubMed  Google Scholar 

  27. Ni L et al (2013) Androgen induces a switch from cytoplasmic retention to nuclear import of the androgen receptor. Mol Cell Biol 33(24):4766–4778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tanner TM et al (2010) A 629RKLKK633 motif in the hinge region controls the androgen receptor at multiple levels. Cell Mol Life Sci 67(11):1919–1927

    Article  CAS  PubMed  Google Scholar 

  29. Haelens A et al (2007) The hinge region regulates DNA binding, nuclear translocation, and transactivation of the androgen receptor. Cancer Res 67(9):4514–4523

    Article  CAS  PubMed  Google Scholar 

  30. Clinckemalie L et al (2012) The hinge region in androgen receptor control. Mol Cell Endocrinol 358(1):1–8

    Article  CAS  PubMed  Google Scholar 

  31. Fu M et al (2000) p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. J Biol Chem 275(27):20853–20860

    Article  CAS  PubMed  Google Scholar 

  32. Katsuno M et al (2012) Pathogenesis and therapy of spinal and bulbar muscular atrophy (SBMA). Prog Neurobiol 99(3):246–256

    Article  CAS  PubMed  Google Scholar 

  33. He B et al (1999) Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH(2)-terminal domain. J Biol Chem 274(52):37219–37225

    Article  CAS  PubMed  Google Scholar 

  34. Saporita AJ et al (2003) Identification and characterization of a ligand-regulated nuclear export signal in androgen receptor. J Biol Chem 278(43):41998–42005

    Article  CAS  PubMed  Google Scholar 

  35. Kratter IH, Finkbeiner S (2010) PolyQ disease: too many Qs, too much function? Neuron 67(6):897–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lieberman AP et al (2014) Peripheral androgen receptor gene suppression rescues disease in mouse models of spinal and bulbar muscular atrophy. Cell Rep 7(3):774–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cortes CJ et al (2014) Muscle expression of mutant androgen receptor accounts for systemic and motor neuron disease phenotypes in spinal and bulbar muscular atrophy. Neuron 82(2):295–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Adachi H et al (2005) Widespread nuclear and cytoplasmic accumulation of mutant androgen receptor in SBMA patients. Brain 128(3):659–670

    Article  PubMed  Google Scholar 

  39. Yu Z et al (2006) Abnormalities of germ cell maturation and sertoli cell cytoskeleton in androgen receptor 113 CAG knock-in mice reveal toxic effects of the mutant protein. Am J Pathol 168(1):195–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wyttenbach A (2004) Role of heat shock proteins during polyglutamine neurodegeneration. J Mol Neurosci 23(1–2):69–95

    Article  CAS  PubMed  Google Scholar 

  41. Jochum T et al (2012) Toxic and non-toxic aggregates from the SBMA and normal forms of androgen receptor have distinct oligomeric structures. Biochim Biophys Acta 1822(6):1070–1078

    Article  CAS  PubMed  Google Scholar 

  42. Taylor JP et al (2003) Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum Mol Genet 12(7):749–757

    Article  CAS  PubMed  Google Scholar 

  43. Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6(1):11–22

    Article  CAS  PubMed  Google Scholar 

  44. Li M et al (1998) Nonneural nuclear inclusions of androgen receptor protein in spinal and bulbar muscular atrophy. Am J Pathol 153(3):695–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li M et al (1998) Nuclear inclusions of the androgen receptor protein in spinal and bulbar muscular atrophy. Ann Neurol 44(2):249–254

    Article  CAS  PubMed  Google Scholar 

  46. Miller J et al (2011) Identifying polyglutamine protein species in situ that best predict neurodegeneration. Nat Chem Biol 7(12):925–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Montie HL et al (2009) Cytoplasmic retention of polyglutamine-expanded androgen receptor ameliorates disease via autophagy in a mouse model of spinal and bulbar muscular atrophy. Hum Mol Genet 18(11)

  48. Takeyama K-I et al (2002) Androgen-dependent neurodegeneration by polyglutamine-expanded human androgen receptor in Drosophila. Neuron 35(5):855–864

    Article  CAS  PubMed  Google Scholar 

  49. Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood)

  50. Pratt WB et al (2014) A model in which heat shock protein 90 targets protein-folding clefts: rationale for a new approach to neuroprotective treatment of protein folding diseases. Exp Biol Med 1–9

  51. Pratt WB et al (2010) Proposal for a role of the Hsp90/Hsp70-based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage. Exp Biol Med (Maywood) 235(3):278–288

    Article  CAS  Google Scholar 

  52. Pratt WB et al (2014) Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharmacol Toxicol 55:353–371

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pratt WB, Morishima Y, Osawa Y (2008) The Hsp90 chaperone machinery regulates signaling by modulating ligand binding clefts. J Biol Chem 283(34):22885–22889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Adachi H et al (2007) CHIP overexpression reduces mutant androgen receptor protein and ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model. Neurobiol Dis 27(19):5115–5126

    CAS  Google Scholar 

  55. Waza M et al (2005) 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nat Med 11:1088–1095

    Article  CAS  PubMed  Google Scholar 

  56. Wang AM et al (2013) Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation. Nat Chem Biol 9:112–118

    Article  CAS  PubMed  Google Scholar 

  57. Van Royen ME et al (2012) Stepwise androgen receptor dimerization. J Cell Sci 125(8):1970–1979

    Article  PubMed  Google Scholar 

  58. Nedelsky NB et al (2010) Native functions of the androgen receptor are essential to pathogenesis in a Drosophila model of spinobulbar muscular atrophy. Neuron 67(6):936–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Orr CR et al (2010) An interdomain interaction of the androgen receptor is required for its aggregation and toxicity in spinal and bulbar muscular atrophy. J Biol Chem 285(46):35567–35577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zboray L et al (2015) Preventing the androgen receptor N/C interaction delays disease onset in a mouse model of SBMA. Cell Rep 13(10):2312–2323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lieberman AP et al (2002) Altered transcriptional regulation in cells expressing the expanded polyglutamine androgen receptor. Hum Mol Genet 11(17):1967–1976

    Article  CAS  PubMed  Google Scholar 

  62. Powell SM et al (2004) Mechanisms of androgen receptor signalling via steroid receptor coactivator-1 in prostate. Endocr Relat Cancer 11(1):117–130

    Article  CAS  PubMed  Google Scholar 

  63. Katsuno M et al (2010) Disrupted transforming growth factor-beta signaling in spinal and bulbar muscular atrophy. J Neurosci 30(16):5702–5712

    Article  CAS  PubMed  Google Scholar 

  64. Sopher B et al (2004) Androgen receptor YAC transgenic mice recapitulate SBMA motor neuronopathy and implicate VEGF164 in the motor neuron degeneration. Neuron 41(5):687–699

    Article  CAS  PubMed  Google Scholar 

  65. Minamiyama M et al (2004) Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum Mol Genet 13(11):1183–1192

    Article  CAS  PubMed  Google Scholar 

  66. Butler R, Bates GP (2006) Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nat Rev Neurosci 7(10):784–796

    Article  CAS  PubMed  Google Scholar 

  67. McCampbell A et al (2001) Histone deacetylase inhibitors reduce polyglutamine toxicity. Proc Natl Acad Sci USA 98(26):15179–15184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Steffan JS et al (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413(6857):739–743

    Article  CAS  PubMed  Google Scholar 

  69. Palazzolo I et al (2007) Akt blocks ligand binding and protects against expanded polyglutamine androgen receptor toxicity. Hum Mol Genet 16(13):1593–1603

    Article  CAS  PubMed  Google Scholar 

  70. Palazzolo I et al (2009) Overexpression of IGF-1 in muscle attenuates disease in a mouse model of spinal and bulbar muscular atrophy. Neuron 63(3):316–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Montie HL, Pestell RG, Merry DE (2011) SIRT1 modulates aggregation and toxicity through deacetylation of the androgen receptor in cell models of SBMA. Neurobiol Dis 31(48):17425–17436

    CAS  Google Scholar 

  72. Mukherjee S et al (2009) Small ubiquitin-like modifier (SUMO) modification of the androgen receptor attenuates polyglutamine-mediated aggregation. J Biol Chem 284(32):21296–21306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chua JP et al (2014) Disrupting SUMOylation potentiates transactivation function and ameliorates polyglutamine AR-mediated disease. J Clin Invest

  74. Sobue G et al (1989) X-linked recessive bulbospinal neuronopathy. A clinicopathological study. Brain 112:209–232

    PubMed  Google Scholar 

  75. Suzuki K et al (2008) CAG repeat size correlates to electrophysiological motor and sensory phenotypes in SBMA. Brain 131(1):229–239

    Article  PubMed  Google Scholar 

  76. Katsuno M et al (2006) Pathogenesis, animal models and therapeutics in spinal and bulbar muscular atrophy (SBMA). Exp Neurol 200(1):8–18

    Article  CAS  PubMed  Google Scholar 

  77. Suzuki K et al (2010) The profile of motor unit number estimation (MUNE) in spinal and bulbar muscular atrophy. J Neurol Neurosurg Psychiatry 81(5):567–571

    Article  PubMed  Google Scholar 

  78. Atsuta N et al (2006) Natural history of spinal and bulbar muscular atrophy (SBMA): a study of 223 Japanese patients. Brain 129(6):1446–1455

    Article  PubMed  Google Scholar 

  79. Rhodes LE et al (2009) Clinical features of spinal and bulbar muscular atrophy. Brain 132(12):3242–3251

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sorarù G et al (2008) Spinal and bulbar muscular atrophy: skeletal muscle pathology in male patients and heterozygous females. J Neurol Sci 264(1–2):100–105

    Article  PubMed  Google Scholar 

  81. Chua JP et al (2014) Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy. Hum Mol Genet 23(5):1376–1386

    Article  CAS  PubMed  Google Scholar 

  82. Yu Z et al (2011) Macroautophagy is regulated by the UPR-mediator CHOP and accentuates the phenotype of SBMA mice. PLoS Genet 7(10)

  83. Rusmini P et al (2015) Aberrant autophagic response in the muscle of a knock-in mouse model of spinal and bulbar muscular atrophy. Sci Rep 5(15174)

  84. Monks DA et al (2007) Overexpression of wild-type androgen receptor in muscle recapitulates polyglutamine disease. Proc Natl Acad Sci USA 104(46):18259–18264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rinaldi C et al (2012) Insulin like growth factor (IGF)-1 administration ameliorates disease manifestations in a mouse model of spinal and bulbar muscular atrophy. Mol Med 18(1):1261–1268

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Malena A et al (2013) Androgen-dependent impairment of myogenesis in spinal and bulbar muscular atrophy. Acta Neuropathol 126:109–121

    Article  CAS  PubMed  Google Scholar 

  87. Funakoshi H et al (1993) Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. J Cell Biol 123(2):455–465

    Article  CAS  PubMed  Google Scholar 

  88. Ramzan F et al (2015) Distinct etiological roles for myocytes and motor neurons in a mouse model of Kennedy’s disease/spinobulbar muscular atrophy. J Neurosci 35(16):6444–6451

    Article  CAS  PubMed  Google Scholar 

  89. Sahashi K et al (2015) Silencing neuronal mutant androgen receptor in a mouse model of spinal and bulbar muscular atrophy. Hum Mol Genet 24(21):5985–5994

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Kayla Capper for help creating the illustration. Supported by the National Institutes of Health (R01 NS055746, R21 NS089516 to A.P.L.) and by the University of Michigan Protein Folding Disease Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Lieberman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giorgetti, E., Lieberman, A.P. Polyglutamine androgen receptor-mediated neuromuscular disease. Cell. Mol. Life Sci. 73, 3991–3999 (2016). https://doi.org/10.1007/s00018-016-2275-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2275-1

Keywords

Navigation