Skip to main content
Log in

Quality control of chemically damaged RNA

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The “central dogma” of molecular biology describes how information contained in DNA is transformed into RNA and finally into proteins. In order for proteins to maintain their functionality in both the parent cell and subsequent generations, it is essential that the information encoded in DNA and RNA remains unaltered. DNA and RNA are constantly exposed to damaging agents, which can modify nucleic acids and change the information they encode. While much is known about how cells respond to damaged DNA, the importance of protecting RNA has only become appreciated over the past decade. Modification of the nucleobase through oxidation and alkylation has long been known to affect its base-pairing properties during DNA replication. Similarly, recent studies have begun to highlight some of the unwanted consequences of chemical damage on mRNA decoding during translation. Oxidation and alkylation of mRNA appear to have drastic effects on the speed and fidelity of protein synthesis. As some mRNAs can persist for days in certain tissues, it is not surprising that it has recently emerged that mRNA-surveillance and RNA-repair pathways have evolved to clear or correct damaged mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wurtmann EJ, Wolin SL (2009) RNA under attack: cellular handling of RNA damage. Crit Rev Biochem Mol Biol 44:34–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nunomura A, Moreira PI, Takeda A, Smith MA, Perry G (2007) Oxidative RNA damage and neurodegeneration. Curr Med Chem 14:2968–2975

    Article  CAS  PubMed  Google Scholar 

  3. Hudson BH, Zaher HS (2015) O6-Methylguanosine leads to position-dependent effects on ribosome speed and fidelity. RNA 21:1648–1659

    Article  PubMed  CAS  Google Scholar 

  4. Simms CL, Hudson BH, Mosior JW, Rangwala AS, Zaher HS (2014) An active role for the ribosome in determining the fate of oxidized mRNA. Cell Rep 9:1256–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hofer T, Badouard C, Bajak E, Ravanat JL, Mattsson A, Cotgreave IA (2005) Hydrogen peroxide causes greater oxidation in cellular RNA than in DNA. Biol Chem 386:333–337

    Article  CAS  PubMed  Google Scholar 

  6. Graille M, Seraphin B (2012) Surveillance pathways rescuing eukaryotic ribosomes lost in translation. Nat Rev Mol Cell Biol 13:727–735

    Article  CAS  PubMed  Google Scholar 

  7. Kervestin S, Jacobson A (2012) NMD: a multifaceted response to premature translational termination. Nat Rev Mol Cell Biol 13:700–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shoemaker CJ, Green R (2012) Translation drives mRNA quality control. Nat Struct Mol Biol 19:594–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gandhi R, Manzoor M, Hudak KA (2008) Depurination of Brome mosaic virus RNA3 in vivo results in translation-dependent accelerated degradation of the viral RNA. J Biol Chem 283:32218–32228

    Article  CAS  PubMed  Google Scholar 

  10. Aas PA, Otterlei M, Falnes PO, Vagbo CB, Skorpen F, Akbari M, Sundheim O, Bjoras M, Slupphaug G, Seeberg E, Krokan HE (2003) Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421:859–863

    Article  CAS  PubMed  Google Scholar 

  11. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  CAS  PubMed  Google Scholar 

  12. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  13. Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52:741–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pick M, Rabani J, Yost F, Fridovich I (1974) The catalytic mechanism of the manganese-containing superoxide dismutase of Escherichia coli studied by pulse radiolysis. J Am Chem Soc 96:7329–7333

    Article  CAS  PubMed  Google Scholar 

  15. Koppenol WH (2001) The Haber–Weiss cycle—70 years later. Redox Rep 6:229–234

    Article  CAS  PubMed  Google Scholar 

  16. Clo E, Snyder JW, Ogilby PR, Gothelf KV (2007) Control and selectivity of photosensitized singlet oxygen production: challenges in complex biological systems. ChemBioChem 8:475–481

    Article  CAS  PubMed  Google Scholar 

  17. Ravanat JL, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol, B 63:88–102

    Article  CAS  Google Scholar 

  18. Barciszewski J, Barciszewska MZ, Siboska G, Rattan SI, Clark BF (1999) Some unusual nucleic acid bases are products of hydroxyl radical oxidation of DNA and RNA. Mol Biol Rep 26:231–238

    Article  CAS  PubMed  Google Scholar 

  19. Gajewski E, Rao G, Nackerdien Z, Dizdaroglu M (1990) Modification of DNA bases in mammalian chromatin by radiation-generated free radicals. Biochemistry 29:7876–7882

    Article  CAS  PubMed  Google Scholar 

  20. Ku¨pfer PA, Leumann CJ (2014) Oxidative Damage on RNA Nucleobases. In: Erdmann VA, Markiewicz WT, Barciszewski J (eds) Chemical biology of nucleic acids (fundamentals and clinical applications). Springer, Berlin, pp 75–94

    Chapter  Google Scholar 

  21. Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G–T and A–C substitutions. J Biol Chem 267:166–172

    CAS  PubMed  Google Scholar 

  22. Hsu GW, Ober M, Carell T, Beese LS (2004) Error-prone replication of oxidatively damaged DNA by a high-fidelity DNA polymerase. Nature 431:217–221

    Article  CAS  PubMed  Google Scholar 

  23. Toyokuni S, Mori T, Dizdaroglu M (1994) DNA base modifications in renal chromatin of Wistar rats treated with a renal carcinogen, ferric nitrilotriacetate. Int J Cancer 57:123–128

    Article  CAS  PubMed  Google Scholar 

  24. Weimann A, Belling D, Poulsen HE (2002) Quantification of 8-oxo-guanine and guanine as the nucleobase, nucleoside and deoxynucleoside forms in human urine by high-performance liquid chromatography-electrospray tandem mass spectrometry. Nucleic Acids Res 30:E7

    Article  PubMed  PubMed Central  Google Scholar 

  25. McKinlay A, Gerard W, Fields S (2012) Global analysis of RNA oxidation in Saccharomyces cerevisiae. Biotechniques 52:109–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park EM, Shigenaga MK, Degan P, Korn TS, Kitzler JW, Wehr CM, Kolachana P, Ames BN (1992) Assay of excised oxidative DNA lesions: isolation of 8-oxoguanine and its nucleoside derivatives from biological fluids with a monoclonal antibody column. Proc Natl Acad Sci USA 89:3375–3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu J, Head E, Gharib AM, Yuan W, Ingersoll RT, Hagen TM, Cotman CW, Ames BN (2002) Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-l-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci USA 99:2356–2361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seo AY, Xu J, Servais S, Hofer T, Marzetti E, Wohlgemuth SE, Knutson MD, Chung HY, Leeuwenburgh C (2008) Mitochondrial iron accumulation with age and functional consequences. Aging Cell 7:706–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hofer T, Marzetti E, Xu J, Seo AY, Gulec S, Knutson MD, Leeuwenburgh C, Dupont-Versteegden EE (2008) Increased iron content and RNA oxidative damage in skeletal muscle with aging and disuse atrophy. Exp Gerontol 43:563–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nunomura A, Perry G, Pappolla MA, Wade R, Hirai K, Chiba S, Smith MA (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci 19:1959–1964

    CAS  PubMed  Google Scholar 

  31. Shan X, Lin CL (2006) Quantification of oxidized RNAs in Alzheimer’s disease. Neurobiol Aging 27:657–662

    Article  CAS  PubMed  Google Scholar 

  32. Nunomura A, Chiba S, Kosaka K, Takeda A, Castellani RJ, Smith MA, Perry G (2002) Neuronal RNA oxidation is a prominent feature of dementia with Lewy bodies. Neuroreport 13:2035–2039

    Article  CAS  PubMed  Google Scholar 

  33. Zhang J, Perry G, Smith MA, Robertson D, Olson SJ, Graham DG, Montine TJ (1999) Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 154:1423–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ding Q, Markesbery WR, Chen Q, Li F, Keller JN (2005) Ribosome dysfunction is an early event in Alzheimer’s disease. J Neurosci 25:9171–9175

    Article  CAS  PubMed  Google Scholar 

  35. Chang Y, Kong Q, Shan X, Tian G, Ilieva H, Cleveland DW, Rothstein JD, Borchelt DR, Wong PC, Lin CL (2008) Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PLoS One 3:e2849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Bradley-Whitman MA, Timmons MD, Beckett TL, Murphy MP, Lynn BC, Lovell MA (2014) Nucleic acid oxidation: an early feature of Alzheimer’s disease. J Neurochem 128:294–304

    Article  CAS  PubMed  Google Scholar 

  37. Sedgwick B (2004) Repairing DNA-methylation damage. Nat Rev Mol Cell Biol 5:148–157

    Article  CAS  PubMed  Google Scholar 

  38. Rydberg B, Lindahl T (1982) Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-l-methionine is a potentially mutagenic reaction. EMBO J 1:211–216

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bellacosa A, Moss EG (2003) RNA repair: damage control. Curr Biol 13:R482–R484

    Article  CAS  PubMed  Google Scholar 

  40. Singer B, Bodell WJ, Cleaver JE, Thomas GH, Rajewsky MF, Thon W (1978) Oxygens in DNA are main targets for ethylnitrosourea in normal and xeroderma pigmentosum fibroblasts and fetal rat brain cells. Nature 276:85–88

    Article  CAS  PubMed  Google Scholar 

  41. Lawrence CW, Borden A, Banerjee SK, LeClerc JE (1990) Mutation frequency and spectrum resulting from a single abasic site in a single-stranded vector. Nucleic Acids Res 18:2153–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu B, Fournier MJ (2004) Interference probing of rRNA with snoRNPs: a novel approach for functional mapping of RNA in vivo. RNA 10:1130–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ougland R, Zhang CM, Liiv A, Johansen RF, Seeberg E, Hou YM, Remme J, Falnes PO (2004) AlkB restores the biological function of mRNA and tRNA inactivated by chemical methylation. Mol Cell 16:107–116

    Article  CAS  PubMed  Google Scholar 

  44. Bodell WJ, Singer B (1979) Influence of hydrogen bonding in DNA and polynucleotides on reaction of nitrogens and oxygens toward ethylnitrosourea. Biochemistry 18:2860–2863

    Article  CAS  PubMed  Google Scholar 

  45. Singer B, Pergolizzi RG, Grunberger D (1979) Synthesis and coding properties of dinucleoside diphosphates containing alky pyrimidines which are formed by the action of carcinogens on nucleic acids. Nucleic Acids Res 6:1709–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Eadie JS, Conrad M, Toorchen D, Topal MD (1984) Mechanism of mutagenesis by O6-methylguanine. Nature 308:201–203

    Article  CAS  PubMed  Google Scholar 

  47. Preston BD, Singer B, Loeb LA (1986) Mutagenic potential of O4-methylthymine in vivo determined by an enzymatic approach to site-specific mutagenesis. Proc Natl Acad Sci USA 83:8501–8505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lachapelle M, Fadlallah S, Krzystyniak K, Fournier M, Cooper S, Denizeau F (1992) Colloidal gold ultraimmunocytochemical localization of DNA and RNA adducts in rat hepatocytes. Carcinogenesis 13:2335–2339

    Article  CAS  PubMed  Google Scholar 

  49. Drablos F, Feyzi E, Aas PA, Vaagbo CB, Kavli B, Bratlie MS, Pena-Diaz J, Otterlei M, Slupphaug G, Krokan HE (2004) Alkylation damage in DNA and RNA-repair mechanisms and medical significance. DNA Repair (Amst) 3:1389–1407

    Article  CAS  Google Scholar 

  50. Heminger KA, Hartson SD, Rogers J, Matts RL (1997) Cisplatin inhibits protein synthesis in rabbit reticulocyte lysate by causing an arrest in elongation. Arch Biochem Biophys 344:200–207

    Article  CAS  PubMed  Google Scholar 

  51. Glazer RI, Lloyd LS (1982) Association of cell lethality with incorporation of 5-fluorouracil and 5-fluorouridine into nuclear RNA in human colon carcinoma cells in culture. Mol Pharmacol 21:468–473

    CAS  PubMed  Google Scholar 

  52. Pettersen HS, Visnes T, Vagbo CB, Svaasand EK, Doseth B, Slupphaug G, Kavli B, Krokan HE (2011) UNG-initiated base excision repair is the major repair route for 5-fluorouracil in DNA, but 5-fluorouracil cytotoxicity depends mainly on RNA incorporation. Nucleic Acids Res 39:8430–8444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhu K, Henning D, Iwakuma T, Valdez BC, Busch H (1999) Adriamycin inhibits human RH II/Gu RNA helicase activity by binding to its substrate. Biochem Biophys Res Commun 266:361–365

    Article  CAS  PubMed  Google Scholar 

  54. Chernova OB, Chernov MV, Agarwal ML, Taylor WR, Stark GR (1995) The role of p53 in regulating genomic stability when DNA and RNA synthesis are inhibited. Trends Biochem Sci 20:431–434

    Article  CAS  PubMed  Google Scholar 

  55. Fiala ES, Conaway CC, Mathis JE (1989) Oxidative DNA and RNA damage in the livers of Sprague-Dawley rats treated with the hepatocarcinogen 2-nitropropane. Cancer Res 49:5518–5522

    CAS  PubMed  Google Scholar 

  56. Hofer T, Seo AY, Prudencio M, Leeuwenburgh C (2006) A method to determine RNA and DNA oxidation simultaneously by HPLC-ECD: greater RNA than DNA oxidation in rat liver after doxorubicin administration. Biol Chem 387:103–111

    Article  CAS  PubMed  Google Scholar 

  57. Gorg B, Qvartskhava N, Keitel V, Bidmon HJ, Selbach O, Schliess F, Haussinger D (2008) Ammonia induces RNA oxidation in cultured astrocytes and brain in vivo. Hepatology 48:567–579

    Article  PubMed  CAS  Google Scholar 

  58. Shan X, Chang Y, Lin CL (2007) Messenger RNA oxidation is an early event preceding cell death and causes reduced protein expression. FASEB J 21:2753–2764

    Article  CAS  PubMed  Google Scholar 

  59. Shan X, Tashiro H, Lin CL (2003) The identification and characterization of oxidized RNAs in Alzheimer’s disease. J Neurosci 23:4913–4921

    CAS  PubMed  Google Scholar 

  60. Nunez ME, Hall DB, Barton JK (1999) Long-range oxidative damage to DNA: effects of distance and sequence. Chem Biol 6:85–97

    Article  CAS  PubMed  Google Scholar 

  61. Shen Z, Wu W, Hazen SL (2000) Activated leukocytes oxidatively damage DNA, RNA, and the nucleotide pool through halide-dependent formation of hydroxyl radical. Biochemistry 39:5474–5482

    Article  CAS  PubMed  Google Scholar 

  62. Liu M, Gong X, Alluri RK, Wu J, Sablo T, Li Z (2012) Characterization of RNA damage under oxidative stress in Escherichia coli. Biol Chem 393:123–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gong X, Tao R, Li Z (2006) Quantification of RNA damage by reverse transcription polymerase chain reactions. Anal Biochem 357:58–67

    Article  CAS  PubMed  Google Scholar 

  64. Honda K, Smith MA, Zhu X, Baus D, Merrick WC, Tartakoff AM, Hattier T, Harris PL, Siedlak SL, Fujioka H, Liu Q, Moreira PI, Miller FP, Nunomura A, Shimohama S, Perry G (2005) Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron. J Biol Chem 280:20978–20986

    Article  CAS  PubMed  Google Scholar 

  65. Ding Q, Markesbery WR, Cecarini V, Keller JN (2006) Decreased RNA, and increased RNA oxidation, in ribosomes from early Alzheimer’s disease. Neurochem Res 31:705–710

    Article  CAS  PubMed  Google Scholar 

  66. Ding Q, Zhu H, Zhang B, Soriano A, Burns R, Markesbery WR (2012) Increased 5S rRNA oxidation in Alzheimer’s disease. J Alzheimers Dis 29:201–209

    CAS  PubMed  Google Scholar 

  67. Thompson DM, Lu C, Green PJ, Parker R (2008) tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 14:2095–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Thompson DM, Parker R (2009) The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol 185:43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Emara MM, Ivanov P, Hickman T, Dawra N, Tisdale S, Kedersha N, Hu GF, Anderson P (2010) Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J Biol Chem 285:10959–10968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang JX, Gao J, Ding SL, Wang K, Jiao JQ, Wang Y, Sun T, Zhou LY, Long B, Zhang XJ, Li Q, Liu JP, Feng C, Liu J, Gong Y, Zhou Z, Li PF (2015) Oxidative modification of miR-184 enables it to target Bcl-xL and Bcl-w. Mol Cell 59:50–61

    Article  CAS  PubMed  Google Scholar 

  71. Tanaka M, Chock PB, Stadtman ER (2007) Oxidized messenger RNA induces translation errors. Proc Natl Acad Sci USA 104:66–71

    Article  CAS  PubMed  Google Scholar 

  72. Miller BG (1973) The biological half-lives of ribosomal and transfer RNA in the mouse uterus. J Endocrinol 59:81–85

    Article  CAS  PubMed  Google Scholar 

  73. Cole SE, LaRiviere FJ, Merrikh CN, Moore MJ (2009) A convergence of rRNA and mRNA quality control pathways revealed by mechanistic analysis of nonfunctional rRNA decay. Mol Cell 34:440–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. LaRiviere FJ, Cole SE, Ferullo DJ, Moore MJ (2006) A late-acting quality control process for mature eukaryotic rRNAs. Mol Cell 24:619–626

    Article  CAS  PubMed  Google Scholar 

  75. Green R, Samaha RR, Noller HF (1997) Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome. J Mol Biol 266:40–50

    Article  CAS  PubMed  Google Scholar 

  76. Fujii K, Kitabatake M, Sakata T, Miyata A, Ohno M (2009) A role for ubiquitin in the clearance of nonfunctional rRNAs. Genes Dev 23:963–974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Parker R (2012) RNA degradation in Saccharomyces cerevisae. Genetics 191:671–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Svensson JP, Pesudo LQ, Fry RC, Adeleye YA, Carmichael P, Samson LD (2011) Genomic phenotyping of the essential and non-essential yeast genome detects novel pathways for alkylation resistance. BMC Syst Biol 5:157

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zaidi IW, Rabut G, Poveda A, Scheel H, Malmstrom J, Ulrich H, Hofmann K, Pasero P, Peter M, Luke B (2008) Rtt101 and Mms1 in budding yeast form a CUL4(DDB1)-like ubiquitin ligase that promotes replication through damaged DNA. EMBO Rep 9:1034–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Prakash L, Prakash S (1977) Isolation and characterization of MMS-sensitive mutants of Saccharomyces cerevisiae. Genetics 86:33–55

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Jobert L, Nilsen H (2014) Regulatory mechanisms of RNA function: emerging roles of DNA repair enzymes. Cell Mol Life Sci 71:2451–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Berquist BR, McNeill DR, Wilson DM 3rd (2008) Characterization of abasic endonuclease activity of human Ape1 on alternative substrates, as well as effects of ATP and sequence context on AP site incision. J Mol Biol 379:17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Barnes T, Kim WC, Mantha AK, Kim SE, Izumi T, Mitra S, Lee CH (2009) Identification of apurinic/apyrimidinic endonuclease 1 (APE1) as the endoribonuclease that cleaves c-myc mRNA. Nucleic Acids Res 37:3946–3958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vascotto C, Fantini D, Romanello M, Cesaratto L, Deganuto M, Leonardi A, Radicella JP, Kelley MR, D’Ambrosio C, Scaloni A, Quadrifoglio F, Tell G (2009) APE1/Ref-1 interacts with NPM1 within nucleoli and plays a role in the rRNA quality control process. Mol Cell Biol 29:1834–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jobert L, Skjeldam HK, Dalhus B, Galashevskaya A, Vagbo CB, Bjoras M, Nilsen H (2013) The human base excision repair enzyme SMUG1 directly interacts with DKC1 and contributes to RNA quality control. Mol Cell 49:339–345

    Article  CAS  PubMed  Google Scholar 

  86. Phizicky EM, Hopper AK (2010) tRNA biology charges to the front. Genes Dev 24:1832–1860

    Article  PubMed  PubMed Central  Google Scholar 

  87. Copela LA, Fernandez CF, Sherrer RL, Wolin SL (2008) Competition between the Rex1 exonuclease and the La protein affects both Trf4p-mediated RNA quality control and pre-tRNA maturation. RNA 14:1214–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kadaba S, Wang X, Anderson JT (2006) Nuclear RNA surveillance in Saccharomyces cerevisiae: Trf4p-dependent polyadenylation of nascent hypomethylated tRNA and an aberrant form of 5S rRNA. RNA 12:508–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ozanick SG, Wang X, Costanzo M, Brost RL, Boone C, Anderson JT (2009) Rex1p deficiency leads to accumulation of precursor initiator tRNAMet and polyadenylation of substrate RNAs in Saccharomyces cerevisiae. Nucleic Acids Res 37:298–308

    Article  CAS  PubMed  Google Scholar 

  90. Vanacova S, Wolf J, Martin G, Blank D, Dettwiler S, Friedlein A, Langen H, Keith G, Keller W (2005) A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol 3:e189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Alexandrov A, Chernyakov I, Gu W, Hiley SL, Hughes TR, Grayhack EJ, Phizicky EM (2006) Rapid tRNA decay can result from lack of nonessential modifications. Mol Cell 21:87–96

    Article  CAS  PubMed  Google Scholar 

  92. Chernyakov I, Whipple JM, Kotelawala L, Grayhack EJ, Phizicky EM (2008) Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the 5′–3′ exonucleases Rat1 and Xrn1. Genes Dev 22:1369–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wilusz JE, Whipple JM, Phizicky EM, Sharp PA (2011) tRNAs marked with CCACCA are targeted for degradation. Science 334:817–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Whipple JM, Lane EA, Chernyakov I, D’Silva S, Phizicky EM (2011) The yeast rapid tRNA decay pathway primarily monitors the structural integrity of the acceptor and T-stems of mature tRNA. Genes Dev 25:1173–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Castano IB, Heath-Pagliuso S, Sadoff BU, Fitzhugh DJ, Christman MF (1996) A novel family of TRF (DNA topoisomerase I-related function) genes required for proper nuclear segregation. Nucleic Acids Res 24:2404–2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mol CD, Arvai AS, Slupphaug G, Kavli B, Alseth I, Krokan HE, Tainer JA (1995) Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis. Cell 80:869–878

    Article  CAS  PubMed  Google Scholar 

  97. Hayakawa H, Kuwano M, Sekiguchi M (2001) Specific binding of 8-oxoguanine-containing RNA to polynucleotide phosphorylase protein. Biochemistry 40:9977–9982

    Article  CAS  PubMed  Google Scholar 

  98. Hayakawa H, Uchiumi T, Fukuda T, Ashizuka M, Kohno K, Kuwano M, Sekiguchi M (2002) Binding capacity of human YB-1 protein for RNA containing 8-oxoguanine. Biochemistry 41:12739–12744

    Article  PubMed  CAS  Google Scholar 

  99. Evdokimova V, Ruzanov P, Imataka H, Raught B, Svitkin Y, Ovchinnikov LP, Sonenberg N (2001) The major mRNA-associated protein YB-1 is a potent 5′ cap-dependent mRNA stabilizer. EMBO J 20:5491–5502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tanaka T, Ohashi S, Kobayashi S (2014) Roles of YB-1 under arsenite-induced stress: translational activation of HSP70 mRNA and control of the number of stress granules. Biochim Biophys Acta 1840:985–992

    Article  CAS  PubMed  Google Scholar 

  101. Wu J, Jiang Z, Liu M, Gong X, Wu S, Burns CM, Li Z (2009) Polynucleotide phosphorylase protects Escherichia coli against oxidative stress. Biochemistry 48:2012–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wu J, Li Z (2008) Human polynucleotide phosphorylase reduces oxidative RNA damage and protects HeLa cell against oxidative stress. Biochem Biophys Res Commun 372:288–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen HW, Rainey RN, Balatoni CE, Dawson DW, Troke JJ, Wasiak S, Hong JS, McBride HM, Koehler CM, Teitell MA, French SW (2006) Mammalian polynucleotide phosphorylase is an intermembrane space RNase that maintains mitochondrial homeostasis. Mol Cell Biol 26:8475–8487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Taddei F, Hayakawa H, Bouton M, Cirinesi A, Matic I, Sekiguchi M, Radman M (1997) Counteraction by MutT protein of transcriptional errors caused by oxidative damage. Science 278:128–130

    Article  CAS  PubMed  Google Scholar 

  105. Hayakawa H, Hofer A, Thelander L, Kitajima S, Cai Y, Oshiro S, Yakushiji H, Nakabeppu Y, Kuwano M, Sekiguchi M (1999) Metabolic fate of oxidized guanine ribonucleotides in mammalian cells. Biochemistry 38:3610–3614

    Article  CAS  PubMed  Google Scholar 

  106. Ishibashi T, Hayakawa H, Ito R, Miyazawa M, Yamagata Y, Sekiguchi M (2005) Mammalian enzymes for preventing transcriptional errors caused by oxidative damage. Nucleic Acids Res 33:3779–3784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kajitani K, Yamaguchi H, Dan Y, Furuichi M, Kang D, Nakabeppu Y (2006) MTH1, an oxidized purine nucleoside triphosphatase, suppresses the accumulation of oxidative damage of nucleic acids in the hippocampal microglia during kainate-induced excitotoxicity. J Neurosci 26:1688–1698

    Article  CAS  PubMed  Google Scholar 

  108. Doma MK, Parker R (2006) Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440:561–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shoemaker CJ, Eyler DE, Green R (2010) Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science 330:369–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shoemaker CJ, Green R (2011) Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast. Proc Natl Acad Sci USA 108:E1392–E1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pisarev AV, Skabkin MA, Pisareva VP, Skabkina OV, Rakotondrafara AM, Hentze MW, Hellen CU, Pestova TV (2010) The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol Cell 37:196–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Frischmeyer PA, van Hoof A, O’Donnell K, Guerrerio AL, Parker R, Dietz HC (2002) An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295:2258–2261

    Article  CAS  PubMed  Google Scholar 

  113. van Hoof A, Frischmeyer PA, Dietz HC, Parker R (2002) Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295:2262–2264

    Article  PubMed  Google Scholar 

  114. Saito S, Hosoda N, Hoshino S (2013) The Hbs1-Dom34 protein complex functions in non-stop mRNA decay in mammalian cells. J Biol Chem 288:17832–17843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lindahl T, Nyberg B (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry 11:3610–3618

    Article  CAS  PubMed  Google Scholar 

  116. Shen L, Song CX, He C, Zhang Y (2014) Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu Rev Biochem 83:585–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fedeles BI, Singh V, Delaney JC, Li D, Essigmann JM (2015) The AlkB family of Fe(II)/alpha-ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond. J Biol Chem 290:20734–20742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ougland R, Rognes T, Klungland A, Larsen E (2015) Non-homologous functions of the AlkB homologs. J Mol Cell Biol 7:494–504

    Article  PubMed  Google Scholar 

  119. Yang CG, Yi C, Duguid EM, Sullivan CT, Jian X, Rice PA, He C (2008) Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA. Nature 452:961–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. van den Born E, Omelchenko MV, Bekkelund A, Leihne V, Koonin EV, Dolja VV, Falnes PO (2008) Viral AlkB proteins repair RNA damage by oxidative demethylation. Nucleic Acids Res 36:5451–5461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Research in the Zaher laboratory is supported by the National Institutes of Health (R01GM112641) and the Searle Scholars Program. We thank the members of the laboratory for comments and helpful discussions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani S. Zaher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simms, C.L., Zaher, H.S. Quality control of chemically damaged RNA. Cell. Mol. Life Sci. 73, 3639–3653 (2016). https://doi.org/10.1007/s00018-016-2261-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2261-7

Keywords

Navigation