Skip to main content

Advertisement

Log in

Ebola virus encodes a miR-155 analog to regulate importin-α5 expression

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The 2014 outbreak of Ebola virus caused more than 10,000 human deaths. Current knowledge of suitable drugs, clinical diagnostic biomarkers and molecular mechanisms of Ebola virus infection is either absent or insufficient. By screening stem-loop structures from the viral genomes of four virulence species, we identified a novel, putative viral microRNA precursor that is specifically expressed by the Ebola virus. The sequence of the microRNA precursor was further confirmed by mining the existing RNA-Seq database. Two putative mature microRNAs were predicted and subsequently validated in human cell lines. Combined with this prediction of the microRNA target, we identified importin-α5, which is a key regulator of interferon signaling following Ebola virus infection, as one putative target. We speculate that this microRNA could facilitate the evasion of the host immune system by the virus. Moreover, this microRNA might be a potential clinical therapeutic target or a diagnostic biomarker for Ebola virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Report of a WHO/International Study Team (1978) Ebola haemorrhagic fever in Sudan (1976). Report of a WHO/International Study Team. Bull World Health Organ 56(2):247–270

  2. Colebunders R, Borchert M (2000) Ebola haemorrhagic fever—a review. J Infect 40(1):16–20

    Article  CAS  PubMed  Google Scholar 

  3. Kuhn JH, Bao Y, Bavari S, Becker S, Bradfute S, Brister JR, Bukreyev AA, Cai Y, Chandran K, Davey RA et al (2013) Virus nomenclature below the species level: a standardized nomenclature for laboratory animal-adapted strains and variants of viruses assigned to the family Filoviridae. Arch Virol 158(6):1425–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ma DY, Suthar MS (2015) Mechanisms of innate immune evasion in re-emerging RNA viruses. Curr Opin Virol 12:26–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu FC, Hou LH, Li JX, Wu SP, Liu P, Zhang GR, Hu YM, Meng FY, Xu JJ, Tang R et al (2015) Safety and immunogenicity of a novel recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in China: preliminary report of a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet 385(9984):2272–2279

    Article  CAS  PubMed  Google Scholar 

  6. Marzi A, Robertson SJ, Haddock E, Feldmann F, Hanley PW, Scott DP, Strong JE, Kobinger G, Best SM, Feldmann H (2015) Ebola vaccine. VSV-EBOV rapidly protects macaques against infection with the 2014/15 Ebola virus outbreak strain. Science 349(6249):739–742

    Article  CAS  PubMed  Google Scholar 

  7. Lai L, Davey R, Beck A, Xu Y, Suffredini AF, Palmore T, Kabbani S, Rogers S, Kobinger G, Alimonti J et al (2015) Emergency postexposure vaccination with vesicular stomatitis virus-vectored Ebola vaccine after needlestick. JAMA 313(12):1249–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huttner A, Dayer JA, Yerly S, Combescure C, Auderset F, Desmeules J, Eickmann M, Finckh A, Goncalves AR, Hooper JW et al (2015) The effect of dose on the safety and immunogenicity of the VSV Ebola candidate vaccine: a randomised double-blind, placebo-controlled phase 1/2 trial. Lancet Infect Dis 15(10):1156–1166

  9. Henao-Restrepo AM, Longini IM, Egger M, Dean NE, Edmunds WJ, Camacho A, Carroll MW, Doumbia M, Draguez B, Duraffour S et al (2015) Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancet 386(9996):857–866

  10. Agnandji ST, Huttner A, Zinser ME, Njuguna P, Dahlke C, Fernandes JF, Yerly S, Dayer JA, Kraehling V, Kasonta R et al (2015) Phase 1 trials of rVSV Ebola vaccine in Africa and Europe—preliminary report. N Engl J Med. doi: 10.1056/NEJMoa1502924

  11. Ledgerwood JE, DeZure AD, Stanley DA, Novik L, Enama ME, Berkowitz NM, Hu Z, Joshi G, Ploquin A, Sitar S et al (2014) Chimpanzee adenovirus vector Ebola vaccine—preliminary report. N Engl J Med. doi:10.1056/NEJMoa1410863

  12. Blaney JE, Marzi A, Willet M, Papaneri AB, Wirblich C, Feldmann F, Holbrook M, Jahrling P, Feldmann H, Schnell MJ (2013) Antibody quality and protection from lethal Ebola virus challenge in nonhuman primates immunized with rabies virus based bivalent vaccine. PLoS Pathog 9(5):e1003389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524

    Article  CAS  PubMed  Google Scholar 

  14. Siomi H, Siomi MC (2010) Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 38(3):323–332

    Article  CAS  PubMed  Google Scholar 

  15. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610

    CAS  PubMed  Google Scholar 

  16. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42 (database issue):D68–73

    Article  Google Scholar 

  17. Cullen BR (2010) Five questions about viruses and microRNAs. PLoS Pathog 6(2):e1000787

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kincaid RP, Sullivan CS (2012) Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog 8(12):e1003018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rouha H, Thurner C, Mandl CW (2010) Functional microRNA generated from a cytoplasmic RNA virus. Nucleic Acids Res 38(22):8328–8337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaul D, Ahlawat A, Gupta SD (2009) HIV-1 genome-encoded hiv1-mir-H1 impairs cellular responses to infection. Mol Cell Biochem 323(1–2):143–148

    Article  CAS  PubMed  Google Scholar 

  21. Hussain M, Torres S, Schnettler E, Funk A, Grundhoff A, Pijlman GP, Khromykh AA, Asgari S (2012) West Nile virus encodes a microRNA-like small RNA in the 3′ untranslated region which up-regulates GATA4 mRNA and facilitates virus replication in mosquito cells. Nucleic Acids Res 40(5):2210–2223

    Article  CAS  PubMed  Google Scholar 

  22. Rosewick N, Momont M, Durkin K, Takeda H, Caiment F, Cleuter Y, Vernin C, Mortreux F, Wattel E, Burny A et al (2013) Deep sequencing reveals abundant noncanonical retroviral microRNAs in B-cell leukemia/lymphoma. Proc Natl Acad Sci USA 110(6):2306–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kincaid RP, Burke JM, Sullivan CS (2012) RNA virus microRNA that mimics a B-cell oncomiR. Proc Natl Acad Sci USA 109(8):3077–3082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Skalsky RL, Olson KE, Blair CD, Garcia-Blanco MA, Cullen BR (2014) A “microRNA-like” small RNA expressed by Dengue virus? Proc Natl Acad Sci USA 111(23):E2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hussain M, Asgari S (2014) MicroRNA-like viral small RNA from Dengue virus 2 autoregulates its replication in mosquito cells. Proc Natl Acad Sci USA 111(7):2746–2751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hussain M, Asgari S (2014) Reply to Skalsky et al.: A microRNA-like small RNA from Dengue virus. Proc Natl Acad Sci USA 111(23):E2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi J, Duan Z, Sun J, Wu M, Wang B, Zhang J, Wang H, Hu N, Hu Y (2014) Identification and validation of a novel microRNA-like molecule derived from a cytoplasmic RNA virus antigenome by bioinformatics and experimental approaches. Virol J 11:121

    Article  PubMed  PubMed Central  Google Scholar 

  28. Teng Y, Wang Y, Zhang X, Liu W, Fan H, Yao H, Lin B, Zhu P, Yuan W, Tong Y et al (2015) Systematic genome-wide screening and prediction of microRNAs in EBOV during the 2014 Ebolavirus outbreak. Sci Rep 5:9912

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liang H, Zhou Z, Zhang S, Zen K, Chen X, Zhang C (2014) Identification of Ebola virus microRNAs and their putative pathological function. Sci China Life Sci 57(10):973–981

    Article  CAS  PubMed  Google Scholar 

  30. Tempel S, Tahi F (2012) A fast ab initio method for predicting miRNA precursors in genomes. Nucleic Acids Res 40(11):e80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z (2007) MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res (web server issue) 35:W339–344

    Article  Google Scholar 

  32. Zhang Y, Yang Y, Zhang H, Jiang X, Xu B, Xue Y, Cao Y, Zhai Q, Zhai Y, Xu M et al (2011) Prediction of novel pre-microRNAs with high accuracy through boosting and SVM. Bioinformatics 27(10):1436–1437

    Article  CAS  PubMed  Google Scholar 

  33. Gkirtzou K, Tsamardinos I, Tsakalides P, Poirazi P (2010) MatureBayes: a probabilistic algorithm for identifying the mature miRNA within novel precursors. PLoS One 5(8):e11843

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL (2008) The Vienna RNA websuite. Nucleic Acids Res 36 (web server issue):W70–W74

    Article  Google Scholar 

  35. Popenda M, Szachniuk M, Antczak M, Purzycka KJ, Lukasiak P, Bartol N, Blazewicz J, Adamiak RW (2012) Automated 3D structure composition for large RNAs. Nucleic Acids Res 40(14):e112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol 19(10):11–21

    Google Scholar 

  37. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J et al (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15(10):1451–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11(8):R86

    Article  PubMed  PubMed Central  Google Scholar 

  39. Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, Marshall D (2010) Tablet–next generation sequence assembly visualization. Bioinformatics 26(3):401–402

    Article  CAS  PubMed  Google Scholar 

  40. Milne I, Stephen G, Bayer M, Cock PJ, Pritchard L, Cardle L, Shaw PD, Marshall D (2013) Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14(2):193–202

    Article  CAS  PubMed  Google Scholar 

  41. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Article  CAS  PubMed  Google Scholar 

  43. Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8(8):1551–1566

    Article  PubMed  Google Scholar 

  44. Kamburov A, Pentchev K, Galicka H, Wierling C, Lehrach H, Herwig R (2011) ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res 39 (Database issue):D712–717

    Article  Google Scholar 

  45. Kamburov A, Wierling C, Lehrach H, Herwig R (2009) ConsensusPathDB—a database for integrating human functional interaction networks. Nucleic Acids Res 37 (Database issue):D623–628

    Article  Google Scholar 

  46. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gire SK, Goba A, Andersen KG, Sealfon RS, Park DJ, Kanneh L, Jalloh S, Momoh M, Fullah M, Dudas G et al (2014) Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science 345(6202):1369–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mateo M, Reid SP, Leung LW, Basler CF, Volchkov VE (2010) Ebolavirus VP24 binding to karyopherins is required for inhibition of interferon signaling. J Virol 84(2):1169–1175

    Article  CAS  PubMed  Google Scholar 

  49. Reid SP, Leung LW, Hartman AL, Martinez O, Shaw ML, Carbonnelle C, Volchkov VE, Nichol ST, Basler CF (2006) Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation. J Virol 80(11):5156–5167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Reid SP, Valmas C, Martinez O, Sanchez FM, Basler CF (2007) Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1. J Virol 81(24):13469–13477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shabman RS, Gulcicek EE, Stone KL, Basler CF (2011) The Ebola virus VP24 protein prevents hnRNP C1/C2 binding to karyopherin alpha1 and partially alters its nuclear import. J Infect Dis 204[Suppl 3]:S904–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang CY, Kuo TH, Ting LP (2006) Human hepatitis B viral e antigen interacts with cellular interleukin-1 receptor accessory protein and triggers interleukin-1 response. J Biol Chem 281(45):34525–34536

    Article  CAS  PubMed  Google Scholar 

  53. Cenciarelli O, Pietropaoli S, Malizia A, Carestia M, D’Amico F, Sassolini A, Di Giovanni D, Rea S, Gabbarini V, Tamburrini A et al (2015) Ebola virus disease 2013-2014 outbreak in west Africa: an analysis of the epidemic spread and response. Int J Microbiol 2015:769121

    Article  PubMed  PubMed Central  Google Scholar 

  54. Feldmann H, Geisbert TW (2011) Ebola haemorrhagic fever. Lancet 377(9768):849–862

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yen B, Mulder LC, Martinez O, Basler CF (2014) Molecular basis for ebolavirus VP35 suppression of human dendritic cell maturation. J Virol 88(21):12500–12510

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kuhn JH (2008) Filoviruses. A compendium of 40 years of epidemiological, clinical, and laboratory studies. Arch Virol Suppl 20:13–360

    Article  PubMed  Google Scholar 

  57. Weik M, Modrof J, Klenk HD, Becker S, Muhlberger E (2002) Ebola virus VP30-mediated transcription is regulated by RNA secondary structure formation. J Virol 76(17):8532–8539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Martinez O, Ndungo E, Tantral L, Miller EH, Leung LW, Chandran K, Basler CF (2013) A mutation in the Ebola virus envelope glycoprotein restricts viral entry in a host species- and cell-type-specific manner. J Virol 87(6):3324–3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lubaki NM, Ilinykh P, Pietzsch C, Tigabu B, Freiberg AN, Koup RA, Bukreyev A (2013) The lack of maturation of Ebola virus-infected dendritic cells results from the cooperative effect of at least two viral domains. J Virol 87(13):7471–7485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xu W, Edwards MR, Borek DM, Feagins AR, Mittal A, Alinger JB, Berry KN, Yen B, Hamilton J, Brett TJ et al (2014) Ebola virus VP24 targets a unique NLS binding site on karyopherin alpha 5 to selectively compete with nuclear import of phosphorylated STAT1. Cell Host Microbe 16(2):187–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gabriel G, Feldmann F, Reimer R, Thiele S, Fischer M, Hartmann E, Bader M, Ebihara H, Hoenen T, Feldmann H (2015) Importin-alpha7 is involved in the formation of Ebola virus inclusion bodies but is not essential for pathogenicity in mice. J Infect Dis 212[Suppl 2]:S316–321

    Article  PubMed  Google Scholar 

  62. George J, Lewis MG, Renne R, Mattapallil JJ (2015) Suppression of transforming growth factor beta receptor 2 and Smad5 is associated with high levels of microRNA miR-155 in the oral mucosa during chronic simian immunodeficiency virus infection. J Virol 89(5):2972–2978

    Article  PubMed  Google Scholar 

  63. Zhao Y, Xu H, Yao Y, Smith LP, Kgosana L, Green J, Petherbridge L, Baigent SJ, Nair V (2011) Critical role of the virus-encoded microRNA-155 ortholog in the induction of Marek’s disease lymphomas. PLoS Pathog 7(2):e1001305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yin Q, Wang X, Fewell C, Cameron J, Zhu H, Baddoo M, Lin Z, Flemington EK (2010) MicroRNA miR-155 inhibits bone morphogenetic protein (BMP) signaling and BMP-mediated Epstein–Barr virus reactivation. J Virol 84(13):6318–6327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lu F, Weidmer A, Liu CG, Volinia S, Croce CM, Lieberman PM (2008) Epstein–Barr virus-induced miR-155 attenuates NF-kappaB signaling and stabilizes latent virus persistence. J Virol 82(21):10436–10443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gatto G, Rossi A, Rossi D, Kroening S, Bonatti S, Mallardo M (2008) Epstein-Barr virus latent membrane protein 1 trans-activates miR-155 transcription through the NF-kappaB pathway. Nucleic Acids Res 36(20):6608–6619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A, Lopez MC, Baker HV, Renne R (2007) Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol 81(23):12836–12845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chi JQ, Teng M, Yu ZH, Xu H, Su JW, Zhao P, Xing GX, Liang HD, Deng RG, Qu LH et al (2015) Marek’s disease virus-encoded analog of microRNA-155 activates the oncogene c-Myc by targeting LTBP1 and suppressing the TGF-beta signaling pathway. Virology 476:72–84

    Article  CAS  PubMed  Google Scholar 

  69. Morgan R, Anderson A, Bernberg E, Kamboj S, Huang E, Lagasse G, Isaacs G, Parcells M, Meyers BC, Green PJ et al (2008) Sequence conservation and differential expression of Marek’s disease virus microRNAs. J Virol 82(24):12213–12220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yu ZH, Teng M, Sun AJ, Yu LL, Hu B, Qu LH, Ding K, Cheng XC, Liu JX, Cui ZZ et al (2014) Virus-encoded miR-155 ortholog is an important potential regulator but not essential for the development of lymphomas induced by very virulent Marek’s disease virus. Virology 448:55–64

    Article  CAS  PubMed  Google Scholar 

  71. Wang P, Hou J, Lin L, Wang C, Liu X, Li D, Ma F, Wang Z, Cao X (2010) Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol 185(10):6226–6233

    Article  CAS  PubMed  Google Scholar 

  72. Hu X, Ye J, Qin A, Zou H, Shao H, Qian K (2015) Both microRNA-155 and virus-encoded MiR-155 ortholog regulate TLR3 expression. PLoS One 10(5):e0126012

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Science and Technology Major Project (2013ZX10004608), Natural Science Foundation of China (NSFC31071316 and NSFC81261130024), National Science and Technology Major Project (2012AA020601), Ministry of Science/Technology (2009CB941701), State Key Laboratory of Agrobiotechnology Grants (2015SKLAB6-13) and the CAU Scientific Fund (No. 2012YJ034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Li.

Ethics declarations

Conflict of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 656 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Sun, J., Zhang, H. et al. Ebola virus encodes a miR-155 analog to regulate importin-α5 expression. Cell. Mol. Life Sci. 73, 3733–3744 (2016). https://doi.org/10.1007/s00018-016-2215-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2215-0

Keywords

Navigation