Skip to main content

Advertisement

Log in

Behind the curtain of tauopathy: a show of multiple players orchestrating tau toxicity

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

tau, a microtubule-associated protein, directly binds with microtubules to dynamically regulate the organization of cellular cytoskeletons, and is especially abundant in neurons of the central nervous system. Under disease conditions such as Pick’s disease, progressive supranuclear palsy, frontotemporal dementia, parkinsonism linked to chromosome 17 and Alzheimer’s disease, tau proteins can self-assemble to paired helical filaments progressing to neurofibrillary tangles. In these diseases, collectively referred to as “tauopathies”, alterations of diverse tau modifications including phosphorylation, metal ion binding, glycosylation, as well as structural changes of tau proteins have all been observed, indicating the complexity and variability of factors in the regulation of tau toxicity. Here, we review our current knowledge and hypotheses from relevant studies on tau toxicity, emphasizing the roles of phosphorylations, metal ions, folding and clearance control underlining tau etiology and their regulations. A summary of clinical efforts and associated findings of drug candidates under development is also presented. It is hoped that a more comprehensive understanding of tau regulation will provide us with a better blueprint of tau networking in neuronal cells and offer hints for the design of more efficient strategies to tackle tau-related diseases in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Aβ:

β-Amyloid

AD:

Alzheimer’s disease

BBB:

Blood–brain barrier

CHIP:

Carboxyl terminus of Hsc70 interacting protein

CMA:

Chaperone-mediated autophagy

CNS:

Central nervous system

CQ:

Clioquinol

FKBP51 and FKBP52:

FK506-binding protein 51 and 52

FTDP-17:

Frontotemporal dementia and parkinsonism linked to chromosome 17

LTP:

Long-term potentiation

MAP:

Microtubule-associated protein

MAPT:

Microtubule-associated protein tau

MARK:

Microtubule/MAP-affinity regulating kinase

MT:

Microtubule

NFTs:

Neurofibrillary tangles

NMNAT2:

Nicotinamide mononucleotide adenylyltransferase 2

PHFs:

Paired helical filaments

PP2A:

Protein phosphatase-2A

PSP:

Progressive supranuclear palsy

PTP1B:

Protein tyrosine phosphatase 1B

TMAO:

Trimethylamine N-oxide

3-MA:

3-Methylamphetamine

References

  1. Weingarten MD, Lockwood AH, Hwo S-Y, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72(5):1858–1862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Zempel H, Mandelkow E (2014) Lost after translation: missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci 37(12):721–732

    Article  PubMed  CAS  Google Scholar 

  3. Shin R, Iwaki T, Kitamoto T, Tateishi J (1991) Hydrated autoclave pretreatment enhances tau immunoreactivity in formalin-fixed normal and Alzheimer’s disease brain tissues. Lab Invest 64(5):693–702

    PubMed  CAS  Google Scholar 

  4. Binder LI, Frankfurter A, Rebhun LI (1986) Differential localization of MAP-2 and tau in mammalian neurons in situ. Ann N Y Acad Sci 466(1):145–166

    Article  PubMed  CAS  Google Scholar 

  5. Neve RL, Harris P, Kosik KS, Kurnit DM, Donlon TA (1986) Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Mol Brain Res 1(3):271–280

    Article  CAS  Google Scholar 

  6. Wolfe MS (2009) Tau mutations in neurodegenerative diseases. J Biol Chem 284(10):6021–6025

    Article  PubMed  CAS  Google Scholar 

  7. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3(4):519–526

    Article  PubMed  CAS  Google Scholar 

  8. Andreadis A, Brown WM, Kosik KS (1992) Structure and novel exons of the human tau gene. Biochem 31(43):10626–10633

    Article  CAS  Google Scholar 

  9. Hong M, Zhukareva V, Vogelsberg-Ragaglia V, Wszolek Z, Reed L, Miller BI et al (1998) Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282(5395):1914–1917

    Article  PubMed  CAS  Google Scholar 

  10. Butner K, Kirschner MW (1991) Tau protein binds to microtubules through a flexible array of distributed weak sites. J Cell Biol 115(3):717–730

    Article  PubMed  CAS  Google Scholar 

  11. Levy SF, Leboeuf AC, Massie MR, Jordan MA, Wilson L, Feinstein SC (2005) Three- and four-repeat tau regulate the dynamic instability of two distinct microtubule subpopulations in qualitatively different manners. Implications for neurodegeneration. J Biol Chem 280(14):13520–13528

    Article  PubMed  CAS  Google Scholar 

  12. Stoothoff WH, Johnson GV (2005) Tau phosphorylation: physiological and pathological consequences. BBA Mol Basis Dis 1739(2):280–297

    Article  CAS  Google Scholar 

  13. Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K (2013) Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J Alzheimers Dis 33(Suppl 1):S123–S139

    PubMed  Google Scholar 

  14. Watanabe A, Hasegawa M, Suzuki M, Takio K, Morishima-Kawashima M, Titani K et al (1993) In vivo phosphorylation sites in fetal and adult rat tau. J Biol Chem 268(34):25712–25717

    PubMed  CAS  Google Scholar 

  15. Mawal-Dewan M, Henley J, Van de Voorde A, Trojanowski JQ, Lee VM (1994) The phosphorylation state of tau in the developing rat brain is regulated by phosphoprotein phosphatases. J Biol Chem 269(49):30981–30987

    PubMed  CAS  Google Scholar 

  16. Harada A, Oguchi K, Okabe S, Kuno J, Terada S, Ohshima T et al (1994) Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 369(6480):488–491

    Article  PubMed  CAS  Google Scholar 

  17. Kopke E, Tung YC, Shaikh S, Alonso AC, Iqbal K, Grundke-Iqbal I (1993) Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem 268(32):24374–24384

    PubMed  CAS  Google Scholar 

  18. Pettegrew JW, Withers G, Panchalingam K, Post JF (1987) 31P nuclear magnetic resonance (NMR) spectroscopy of brain in aging and Alzheimer’s disease. J Neural Transm Suppl 24:261–268

    PubMed  CAS  Google Scholar 

  19. Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18(6):756–764

    Article  PubMed  CAS  Google Scholar 

  20. Mukrasch MD, Bibow S, Korukottu J, Jeganathan S, Biernat J, Griesinger C et al (2009) Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol 7(2):e1000034

    Article  PubMed Central  CAS  Google Scholar 

  21. Lin YT, Cheng JT, Liang LC, Ko CY, Lo YK, Lu PJ (2007) The binding and phosphorylation of Thr231 is critical for Tau’s hyperphosphorylation and functional regulation by glycogen synthase kinase 3β. J Neurochem 103(2):802–813

    Article  PubMed  CAS  Google Scholar 

  22. Iqbal K, del C Alonso A, Chen S, Chohan MO, El-Akkad E, Gong C-X et al (2005) Tau pathology in Alzheimer disease and other tauopathies. BBA Mol Basis Dis 1739(2):198–210

    Article  CAS  Google Scholar 

  23. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    PubMed  CAS  Google Scholar 

  24. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298(5594):789–791

    Article  PubMed  CAS  Google Scholar 

  25. Ballatore C, Lee VM-Y, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8(9):663–672

    Article  PubMed  CAS  Google Scholar 

  26. Foster NL, Wilhelmsen K, Sima AA, Jones MZ, D’Amato CJ, Gilman S (1997) Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Ann Neurol 41(6):706–715

    Article  PubMed  CAS  Google Scholar 

  27. Bird TD, Nochlin D, Poorkaj P, Cherrier M, Kaye J, Payami H et al (1999) A clinical pathological comparison of three families with frontotemporal dementia and identical mutations in the tau gene (P301L). Brain 122(4):741–756

    Article  PubMed  Google Scholar 

  28. Bugiani O, Murrell JR, Giaccone G, Hasegawa M, Ghigo G, Tabaton M et al (1999) Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. J Neuropathol Exp Neurol 58(6):667–677

    Article  PubMed  CAS  Google Scholar 

  29. Cordes M, Wszolek Z, Calne D, Rodnitzky R, Pfeiffer R (1992) Magnetic resonance imaging studies in rapidly progressive autosomal dominant parkinsonism and dementia with pallido-ponto-nigral degeneration. Neurodegeneration 1:217–224

    Google Scholar 

  30. Wszolek Z, Pfeiffer R, Bhatt M, Schelper R, Cordes M, Snow B et al (1992) Rapidly progressive autosomal dominant parkinsonism and dementia with pallido-ponto-nigral degeneration. Ann Neurol 32(3):312–320

    Article  PubMed  CAS  Google Scholar 

  31. Wszolek ZK, Tsuboi Y, Ghetti B, Pickering-Brown S, Baba Y, Cheshire WP (2006) Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Orphanet J Rare Dis 1:30

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H et al (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393(6686):702–705

    Article  PubMed  CAS  Google Scholar 

  33. Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci USA 95(13):7737–7741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Goedert M, Spillantini MG (2000) Tau mutations in frontotemporal dementia FTDP-17 and their relevance for Alzheimer’s disease. BBA Mol Basis Dis 1502(1):110–121

    Article  CAS  Google Scholar 

  35. Ingram EM, Spillantini MG (2002) Tau gene mutations: dissecting the pathogenesis of FTDP-17. Trends Mol Med 8(12):555–562

    Article  PubMed  CAS  Google Scholar 

  36. Zhang B, Higuchi M, Yoshiyama Y, Ishihara T, Forman MS, Martinez D et al (2004) Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy. J Neurosci 24(19):4657–4667

    Article  PubMed  CAS  Google Scholar 

  37. Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, Hutton M et al (2001) Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293(5530):711–714

    Article  PubMed  CAS  Google Scholar 

  38. Kraemer BC, Zhang B, Leverenz JB, Thomas JH, Trojanowski JQ, Schellenberg GD (2003) Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc Natl Acad Sci USA 100(17):9980–9985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Teschendorf D, Link CD (2009) What have worm models told us about the mechanisms of neuronal dysfunction in human neurodegenerative diseases. Mol Neurodegener 4(1):1–13

    Article  CAS  Google Scholar 

  40. Brandt R, Gergou A, Wacker I, Fath T, Hutter H (2009) A Caenorhabditis elegans model of tau hyperphosphorylation: induction of developmental defects by transgenic overexpression of Alzheimer’s disease-like modified tau. Neurobiol Aging 30(1):22–33

    Article  PubMed  CAS  Google Scholar 

  41. Cowan CM, Sealey MA, Quraishe S, Targett M-T, Marcellus K, Allan D et al (2011) Modelling tauopathies in Drosophila: insights from the fruit fly. Int J Alzheimers Dis 2011:598157

    PubMed  PubMed Central  Google Scholar 

  42. Mershin A, Pavlopoulos E, Fitch O, Braden BC, Nanopoulos DV, Skoulakis EM (2004) Learning and memory deficits upon TAU accumulation in Drosophila mushroom body neurons. Learn Mem 11(3):277–287

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mudher A, Shepherd D, Newman T, Mildren P, Jukes J, Squire A et al (2004) GSK-3β inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila. Mol Psychiatry 9(5):522–530

    Article  PubMed  CAS  Google Scholar 

  44. Nishimura I, Yang Y, Lu B (2004) PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila. Cell 116(5):671–682

    Article  PubMed  CAS  Google Scholar 

  45. Shulman JM, Feany MB (2003) Genetic modifiers of tauopathy in Drosophila. Genetics 165(3):1233–1242

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Blard O, Feuillette S, Bou J, Chaumette B, Frébourg T, Campion D et al (2007) Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in Drosophila. Hum Mol Genet 16(5):555–566

    Article  PubMed  CAS  Google Scholar 

  47. Huang Y, Wu Z, Cao Y, Lang M, Lu B, Zhou B (2014) Zinc binding directly regulates tau toxicity independent of tau hyperphosphorylation. Cell Rep 8(3):831–842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Muqit MM, Feany MB (2002) Modelling neurodegenerative diseases in Drosophila: a fruitful approach? Nat Rev Neurosci 3(3):237–243

    Article  PubMed  CAS  Google Scholar 

  49. Iijima K, Gatt A, Iijima-Ando K (2010) Tau Ser262 phosphorylation is critical for Aβ42-induced tau toxicity in a transgenic Drosophila model of Alzheimer’s disease. Hum Mol Genet 19(15):2947–2957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ke YD, Suchowerska AK, van der Hoven J, De Silva DM, Wu CW, van Eersel J et al (2012) Lessons from tau-deficient mice. Int J Alzheimers Dis 2012:873270

    PubMed  PubMed Central  Google Scholar 

  51. Lei P, Ayton S, Moon S, Zhang Q, Volitakis I, Finkelstein DI et al (2014) Motor and cognitive deficits in aged tau knockout mice in two background strains. Mol Neurodegener 9(1):29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Andorfer C, Kress Y, Espinoza M, De Silva R, Tucker KL, Barde YA et al (2003) Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J Neurochem 86(3):582–590

    Article  PubMed  CAS  Google Scholar 

  53. Polydoro M, Acker CM, Duff K, Castillo PE, Davies P (2009) Age-dependent impairment of cognitive and synaptic function in the htau mouse model of tau pathology. J Neurosci 29(34):10741–10749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Lim F, Hernandez F, Lucas J, Gomez-Ramos P, Moran M, Avila J (2001) FTDP-17 mutations in tau transgenic mice provoke lysosomal abnormalities and tau filaments in forebrain. Mol Cell Neurosci 18(6):702–714

    Article  PubMed  CAS  Google Scholar 

  55. Tatebayashi Y, Miyasaka T, Chui D-H, Akagi T, K-i Mishima, Iwasaki K et al (2002) Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proc Natl Acad Sci USA 99(21):13896–13901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K et al (2002) Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 22(21):9340–9351

    PubMed  CAS  Google Scholar 

  57. McMillan PJ, Kraemer BC, Robinson L, Leverenz JB, Raskind M, Schellenberg G (2011) Truncation of tau at E391 promotes early pathological changes in transgenic mice. J Neuropathol Exp Neurol 70(11):1006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Cohen TJ, Guo JL, Hurtado DE, Kwong LK, Mills IP, Trojanowski JQ et al (2011) The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun 2:252

    Article  PubMed  PubMed Central  Google Scholar 

  59. Paquet D, Bhat R, Sydow A, Mandelkow E-M, Berg S, Hellberg S et al (2009) A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. J Clin Invest 119(5):1382–1395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Zilka N, Filipcik P, Koson P, Fialova L, Skrabana R, Zilkova M et al (2006) Truncated tau from sporadic Alzheimer’s disease suffices to drive neurofibrillary degeneration in vivo. FEBS Lett 580(15):3582–3588

    Article  PubMed  CAS  Google Scholar 

  61. Filipcik P, Zilka N, Bugos O, Kucerak J, Koson P, Novak P et al (2012) First transgenic rat model developing progressive cortical neurofibrillary tangles. Neurobiol Aging 33(7):1448–1456

    Article  PubMed  Google Scholar 

  62. Do Carmo S, Cuello AC (2013) Modeling Alzheimer’s disease in transgenic rats. Mol Neurodegener 8(1):37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Hawkins BE, Krishnamurthy S, Castillo-Carranza DL, Sengupta U, Prough DS, Jackson GR et al (2013) Rapid accumulation of endogenous tau oligomers in a rat model of traumatic brain injury: possible link between traumatic brain injury and sporadic tauopathies. J Biol Chem 288(23):17042–17050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Podlisny M, Tolan D, Selkoe D (1991) Homology of the amyloid beta protein precursor in monkey and human supports a primate model for beta amyloidosis in Alzheimer’s disease. Am J Pathol 138(6):1423

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Guela C, Wu C-K, Saroff D, Lorenzo A, Yuan M, Yankner BA (1998) Aging renders the brain vulnerable to amyloid β-protein neurotoxicity. Nat Med 4(7):827–831

    Article  Google Scholar 

  66. Härtig W, Klein C, Brauer K, Schüppel K-F, Arendt T, Brückner G et al (2000) Abnormally phosphorylated protein tau in the cortex of aged individuals of various mammalian orders. Acta Neuropathol 100(3):305–312

    Article  PubMed  Google Scholar 

  67. Oikawa N, Kimura N, Yanagisawa K (2010) Alzheimer-type tau pathology in advanced aged nonhuman primate brains harboring substantial amyloid deposition. Brain Res 1315:137–149

    Article  PubMed  CAS  Google Scholar 

  68. Schultz C, Hubbard G, Rüb U, Braak E, Braak H (2000) Age-related progression of tau pathology in brains of baboons. Neurobiol Aging 21(6):905–912

    Article  PubMed  CAS  Google Scholar 

  69. Rosen RF, Farberg AS, Gearing M, Dooyema J, Long PM, Anderson DC et al (2008) Tauopathy with paired helical filaments in an aged chimpanzee. J Comp Neurol 509(3):259–270

    Article  PubMed  PubMed Central  Google Scholar 

  70. Heuer E, Rosen RF, Cintron A, Walker LC (2012) Nonhuman primate models of Alzheimer-like cerebral proteopathy. Curr Pharm Des 18(8):1159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Trojanowski JQ, Lee VM (2005) Pathological tau: a loss of normal function or a gain in toxicity? Nat Neurosci 8(9):1136–1137

    Article  PubMed  CAS  Google Scholar 

  72. Ward SM, Himmelstein DS, Lancia JK, Binder LI (2012) Tau oligomers and tau toxicity in neurodegenerative disease. Biochem Soc Trans 40(4):667–671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Drewes G, Trinczek B, Illenberger S, Biernat J, Schmitt-Ulms G, Meyer HE et al (1995) Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. J Biol Chem 270(13):7679–7688

    Article  PubMed  CAS  Google Scholar 

  74. Sengupta A, Kabat J, Novak M, Wu Q, Grundke-Iqbal I, Iqbal K (1998) Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules. Arch Biochem Biophys 357(2):299–309

    Article  PubMed  CAS  Google Scholar 

  75. Bramblett GT, Goedert M, Jakes R, Merrick SE, Trojanowski JQ, Lee VM (1993) Abnormal tau phosphorylation at Ser396 in Alzheimer’s disease recapitulates development and contributes to reduced microtubule binding. Neuron 10(6):1089–1099

    Article  PubMed  CAS  Google Scholar 

  76. Spires-Jones TL, Stoothoff WH, de Calignon A, Jones PB, Hyman BT (2009) Tau pathophysiology in neurodegeneration: a tangled issue. Trends Neurosci 32(3):150–159

    Article  PubMed  CAS  Google Scholar 

  77. Matsuoka Y, Jouroukhin Y, Gray AJ, Ma L, Hirata-Fukae C, Li H-F et al (2008) A neuronal microtubule-interacting agent, NAPVSIPQ, reduces tau pathology and enhances cognitive function in a mouse model of Alzheimer’s disease. J Pharmacol Exp Ther 325(1):146–153

    Article  PubMed  CAS  Google Scholar 

  78. Matsuoka Y, Gray AJ, Hirata-Fukae C, Minami SS, Waterhouse EG, Mattson MP et al (2007) Intranasal NAP administration reduces accumulation of amyloid peptide and tau hyperphosphorylation in a transgenic mouse model of Alzheimer’s disease at early pathological stage. J Mol Neurosci 31(2):165–170

    PubMed  CAS  Google Scholar 

  79. Feijoo C, Campbell DG, Jakes R, Goedert M, Cuenda A (2005) Evidence that phosphorylation of the microtubule-associated protein Tau by SAPK4/p38delta at Thr50 promotes microtubule assembly. J Cell Sci 118(Pt 2):397–408

    Article  PubMed  CAS  Google Scholar 

  80. Tseng HC, Lu Q, Henderson E, Graves DJ (1999) Phosphorylated tau can promote tubulin assembly. Proc Natl Acad Sci USA 96(17):9503–9508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Trinczek B, Ebneth A, Mandelkow EM, Mandelkow E (1999) Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J Cell Sci 112(Pt 14):2355–2367

    PubMed  CAS  Google Scholar 

  82. Mandelkow EM, Thies E, Trinczek B, Biernat J, Mandelkow E (2004) MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. J Cell Biol 167(1):99–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Tashiro K, Hasegawa M, Ihara Y, Iwatsubo T (1997) Somatodendritic localization of phosphorylated tau in neonatal and adult rat cerebral cortex. NeuroReport 8(12):2797–2801

    Article  PubMed  CAS  Google Scholar 

  84. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112(4):389–404

    Article  PubMed  PubMed Central  Google Scholar 

  85. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  PubMed  CAS  Google Scholar 

  86. Kanai Y, Hirokawa N (1995) Sorting mechanisms of tau and MAP2 in neurons: suppressed axonal transit of MAP2 and locally regulated microtubule binding. Neuron 14(2):421–432

    Article  PubMed  CAS  Google Scholar 

  87. Schneider A, Biernat J, Von Bergen M, Mandelkow E, Mandelkow E-M (1999) Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry 38(12):3549–3558

    Article  PubMed  CAS  Google Scholar 

  88. Li X, Kumar Y, Zempel H, Mandelkow EM, Biernat J, Mandelkow E (2011) Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. EMBO J 30(23):4825–4837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Spillantini M, Crowther R, Goedert M (1996) Comparison of the neurofibrillary pathology in Alzheimer’s disease and familial presenile dementia with tangles. Acta Neuropathol 92(1):42–48

    Article  PubMed  CAS  Google Scholar 

  90. Reed LA, Schelper RL, Solodkin A, Van Hoesen GW, Morris JC, Trojanowski JQ et al (1997) Autosomal dominant dementia with widespread neurofibrillary tangles. Ann Neurol 42(4):564–572

    Article  PubMed  CAS  Google Scholar 

  91. Van Swieten J, Stevens M, Rosso S, Rizzu P, Joosse M, De Koning I et al (1999) Phenotypic variation in hereditary frontotemporal dementia with tau mutations. Ann Neurol 46(4):617–626

    Article  PubMed  Google Scholar 

  92. Kopeikina KJ, Polydoro M, Tai HC, Yaeger E, Carlson GA, Pitstick R et al (2013) Synaptic alterations in the rTg4510 mouse model of tauopathy. J Comp Neurol 521(6):1334–1353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Rosenmann H, Grigoriadis N, Eldar-Levy H, Avital A, Rozenstein L, Touloumi O et al (2008) A novel transgenic mouse expressing double mutant tau driven by its natural promoter exhibits tauopathy characteristics. Exp Neurol 212(1):71–84

    Article  PubMed  CAS  Google Scholar 

  94. Mohamed NV, Herrou T, Plouffe V, Piperno N, Leclerc N (2013) Spreading of tau pathology in Alzheimer’s disease by cell-to-cell transmission. Eur J Neurosci 37(12):1939–1948

    Article  PubMed  Google Scholar 

  95. Thies E, Mandelkow E-M (2007) Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1. J Neurosci 27(11):2896–2907

    Article  PubMed  CAS  Google Scholar 

  96. Dubey M, Chaudhury P, Kabiru H, Shea TB (2008) Tau inhibits anterograde axonal transport and perturbs stability in growing axonal neurites in part by displacing kinesin cargo: neurofilaments attenuate tau-mediated neurite instability. Cell Motil Cytoskeleton 65(2):89–99

    Article  PubMed  CAS  Google Scholar 

  97. Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK et al (2010) Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68(6):1067–1081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Moreno H, Choi S, Yu E, Brusco J, Avila J, Moreira JE et al (2011) Blocking effects of human tau on squid giant synapse transmission and its prevention by T-817 MA. Front Synaptic Neurosci 3:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J et al (2010) Dendritic function of tau mediates amyloid-β toxicity in Alzheimer’s disease mouse models. Cell 142(3):387–397

    Article  PubMed  CAS  Google Scholar 

  100. Roberson ED, Halabisky B, Yoo JW, Yao J, Chin J, Yan F et al (2011) Amyloid-β/Fyn–induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease. J Neurosci 31(2):700–711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Zilkova M, Zilka N, Kovac A, Kovacech B, Skrabana R, Skrabanova M et al (2011) Hyperphosphorylated truncated protein tau induces caspase-3 independent apoptosis-like pathway in the Alzheimer’s disease cellular model. J Alzheimers Dis 23(1):161–169

    PubMed  CAS  Google Scholar 

  102. Wang J-Z, Wang Z-H, Tian Q (2014) Tau hyperphosphorylation induces apoptotic escape and triggers neurodegeneration in Alzheimer’s disease. Neurosci Bull 30(2):359–366

    Article  PubMed  CAS  Google Scholar 

  103. Grundke-Iqbal I, Iqbal K, Tung Y-C, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83(13):4913–4917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Delaere P, Duyckaerts C, Brion JP, Poulain V, Hauw J-J (1989) Tau, paired helical filaments and amyloid in the neocortex: a morphometric study of 15 cases with graded intellectual status in aging and senile dementia of Alzheimer type. Acta Neuropathol 77(6):645–653

    Article  PubMed  CAS  Google Scholar 

  105. Duyckaerts C, Bennecib M, Grignon Y, Uchihara T, He Y, Piette F et al (1997) Modeling the relation between neurofibrillary tangles and intellectual status. Neurobiol Aging 18(3):267–273

    Article  PubMed  CAS  Google Scholar 

  106. Giannakopoulos P, Herrmann F, Bussiere T, Bouras C, Kövari E, Perl D et al (2003) Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60(9):1495–1500

    Article  PubMed  CAS  Google Scholar 

  107. Callahan LM, Coleman PD (1995) Neurons bearing neurofibrillary tangles are responsible for selected synaptic deficits in Alzheimer’s disease. Neurobiol Aging 16(3):311–314

    Article  PubMed  CAS  Google Scholar 

  108. Katsuse O, Lin W-L, Lewis J, Hutton ML, Dickson DW (2006) Neurofibrillary tangle-related synaptic alterations of spinal motor neurons of P301L tau transgenic mice. Neurosci Lett 409(2):95–99

    Article  PubMed  CAS  Google Scholar 

  109. Guillozet-Bongaarts AL, Cahill ME, Cryns VL, Reynolds MR, Berry RW, Binder LI (2006) Pseudophosphorylation of tau at serine 422 inhibits caspase cleavage: in vitro evidence and implications for tangle formation in vivo. J Neurochem 97(4):1005–1014

    Article  PubMed  CAS  Google Scholar 

  110. Morsch R, Simon W, Coleman PD (1999) Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol 58(2):188–197

    Article  PubMed  CAS  Google Scholar 

  111. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M et al (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309(5733):476–481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. O’Leary JC 3rd, Li Q, Marinec P, Blair LJ, Congdon EE, Johnson AG et al (2010) Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden. Mol Neurodegener 5:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Patterson KR, Remmers C, Fu Y, Brooker S, Kanaan NM, Vana L et al (2011) Characterization of prefibrillar Tau oligomers in vitro and in Alzheimer disease. J Biol Chem 286(26):23063–23076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Sarmiento J, Troncoso J, Jackson GR et al (2012) Identification of oligomers at early stages of tau aggregation in Alzheimer’s disease. FASEB J 26(5):1946–1959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Tian H, Davidowitz E, Lopez P, Emadi S, Moe J, Sierks M (2013) Trimeric tau is toxic to human neuronal cells at low nanomolar concentrations. Int J Cell Biol 2013:260787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Clos AL, Jackson GR, Kayed R (2011) Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol Neurodegener 6(39):1–14

    Google Scholar 

  117. Patterson KR, Ward SM, Combs B, Voss K, Kanaan NM, Morfini G et al (2011) Heat shock protein 70 prevents both tau aggregation and the inhibitory effects of preexisting tau aggregates on fast axonal transport. Biochemistry 50(47):10300–10310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Ma Q-L, Zuo X, Yang F, Ubeda OJ, Gant DJ, Alaverdyan M et al (2013) Curcumin suppresses soluble tau dimers and corrects molecular chaperone, synaptic, and behavioral deficits in aged human tau transgenic mice. J Biol Chem 288(6):4056–4065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Kiritoshi T, Neugebauer V et al (2012) Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci Rep 2:700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Robertson LA, Moya KL, Breen KC (2004) The potential role of tau protein O-glycosylation in Alzheimer’s disease. J Alzheimers Dis 6(5):489–495

    PubMed  CAS  Google Scholar 

  121. Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW et al (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67(6):953–966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Cotman CW, Poon WW, Rissman RA, Blurton-Jones M (2005) The role of caspase cleavage of tau in Alzheimer disease neuropathology. J Neuropathol Exp Neurol 64(2):104–112

    Article  PubMed  CAS  Google Scholar 

  123. Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci USA 101(29):10804–10809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Yuzwa SA, Shan X, Macauley MS, Clark T, Skorobogatko Y, Vosseller K et al (2012) Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat Chem Biol 8(4):393–399

    Article  PubMed  CAS  Google Scholar 

  125. Augustinack JC, Schneider A, Mandelkow E-M, Hyman BT (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol 103(1):26–35

    Article  PubMed  CAS  Google Scholar 

  126. Talmat-Amar Y, Arribat Y, Redt-Clouet C, Feuillette S, Bougé A-L, Lecourtois M et al (2011) Important neuronal toxicity of microtubule-bound Tau in vivo in Drosophila. Hum Mol Genet 20(19):3738–3745

    Article  PubMed  CAS  Google Scholar 

  127. Kimura T, Yamashita S, Fukuda T, Park JM, Murayama M, Mizoroki T et al (2007) Hyperphosphorylated tau in parahippocampal cortex impairs place learning in aged mice expressing wild-type human tau. EMBO J 26(24):5143–5152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Le Corre S, Klafki HW, Plesnila N, Hübinger G, Obermeier A, Sahagún H et al (2006) An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice. Proc Natl Acad Sci USA 103(25):9673–9678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Fath T, Eidenmüller J, Brandt R (2002) Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer’s disease. J Neurosci 22(22):9733–9741

    PubMed  CAS  Google Scholar 

  130. Abraha A, Ghoshal N, Gamblin TC, Cryns V, Berry RW, Kuret J et al (2000) C-terminal inhibition of tau assembly in vitro and in Alzheimer’s disease. J Cell Sci 113(21):3737–3745

    PubMed  CAS  Google Scholar 

  131. Mondragón-Rodríguez S, Perry G, Luna-Muñoz J, Acevedo-Aquino M, Williams S (2014) Phosphorylation of tau protein at sites Ser396–404 is one of the earliest events in Alzheimer’s disease and Down syndrome. Neuropathol Appl Neurobiol 40(2):121–135

    Article  PubMed  CAS  Google Scholar 

  132. Blazquez-Llorca L, Garcia-Marin V, Merino-Serrais P, Ávila J, DeFelipe J (2011) Abnormal tau phosphorylation in the thorny excrescences of CA3 hippocampal neurons in patients with Alzheimer’s disease. J Alzheimers Dis 26(4):683–698

    PubMed  CAS  Google Scholar 

  133. Biernat J, Wu Y-Z, Timm T, Zheng-Fischhöfer Q, Mandelkow E, Meijer L et al (2002) Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. Mol Biol Cell 13(11):4013–4028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Drewes G, Ebneth A, Preuss U, Mandelkow E-M, Mandelkow E (1997) MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89(2):297–308

    Article  PubMed  CAS  Google Scholar 

  135. Chin JY, Knowles RB, Schneider A, Drewes G, Mandelkow E-M, Hyman BT (2000) Microtubule-affinity regulating kinase (MARK) is tightly associated with neurofibrillary tangles in alzheimer brain: a fluorescence resonance energy transfer study. J Neuropathol Exp Neurol 59(11):966–971

    Article  PubMed  CAS  Google Scholar 

  136. Hernández F, Gómez de Barreda E, Fuster-Matanzo A, Lucas JJ, Avila J (2010) GSK3: a possible link between beta amyloid peptide and tau protein. Exp Neurol 223(2):322–325

    Article  PubMed  CAS  Google Scholar 

  137. Pei J-J, Tanaka T, Tung Y-C, Braak E, Iqbal K, Grundke-Iqbal I (1997) Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J Neuropathol Exp Neurol 56(1):70–78

    Article  PubMed  CAS  Google Scholar 

  138. Cho JH, Johnson GV (2004) Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3β (GSK3β) plays a critical role in regulating tau’s ability to bind and stabilize microtubules. J Neurochem 88(2):349–358

    Article  PubMed  CAS  Google Scholar 

  139. Lovestone S, Reynolds CH, Latimer D, Davis DR, Anderton BH, Gallo J-M et al (1994) Alzheimer’s disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr Biol 4(12):1077–1086

    Article  PubMed  CAS  Google Scholar 

  140. Gómez-Sintes R, Hernández F, Bortolozzi A, Artigas F, Avila J, Zaratin P et al (2007) Neuronal apoptosis and reversible motor deficit in dominant-negative GSK-3 conditional transgenic mice. EMBO J 26(11):2743–2754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Zhu LQ, Wang SH, Liu D, Yin YY, Tian Q, Wang XC et al (2007) Activation of glycogen synthase kinase-3 inhibits long-term potentiation with synapse-associated impairments. J Neurosci 27(45):12211–12220

    Article  PubMed  CAS  Google Scholar 

  142. Hong M, Chen DC, Klein PS, Lee VM-Y (1997) Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J Biol Chem 272(40):25326–25332

    Article  PubMed  CAS  Google Scholar 

  143. Pérez M, Hernández F, Lim F, Díaz-Nido J, Avila J (2003) Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. J Alzheimers Dis 5(4):301–308

    PubMed  Google Scholar 

  144. Noble W, Olm V, Takata K, Casey E, Mary O, Meyerson J et al (2003) Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 38(4):555–565

    Article  PubMed  CAS  Google Scholar 

  145. Ahlijanian MK, Barrezueta NX, Williams RD, Jakowski A, Kowsz KP, McCarthy S et al (2000) Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc Natl Acad Sci USA 97(6):2910–2915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Zheng YL, Kesavapany S, Gravell M, Hamilton RS, Schubert M, Amin N et al (2005) A Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons. EMBO J 24(1):209–220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Morfini G, Szebenyi G, Brown H, Pant HC, Pigino G, DeBoer S et al (2004) A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons. EMBO J 23(11):2235–2245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Town T, Zolton J, Shaffner R, Schnell B, Crescentini R, Wu Y et al (2002) p35/Cdk5 pathway mediates soluble amyloid β peptide induced tau phosphorylation in vitro. J Neurosci Res 69(3):362–372

    Article  PubMed  CAS  Google Scholar 

  149. Liu T, Perry G, Chan HW, Verdile G, Martins RN, Smith MA et al (2004) Amyloid-β induced toxicity of primary neurons is dependent upon differentiation-associated increases in tau and cyclin-dependent kinase 5 expression. J Neurochem 88(3):554–563

    Article  PubMed  CAS  Google Scholar 

  150. Gong CX, Shaikh S, Wang JZ, Zaidi T, Grundke-Iqbal I, Iqbal K (1995) Phosphatase activity toward abnormally phosphorylated τ: decrease in Alzheimer disease brain. J Neurochem 65(2):732–738

    Article  PubMed  CAS  Google Scholar 

  151. Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2005) Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 22(8):1942–1950

    Article  PubMed  Google Scholar 

  152. Merrick SE, Demoise DC, Lee VM (1996) Site-specific dephosphorylation of tau protein at Ser202/Thr205 in response to microtubule depolymerization in cultured human neurons involves protein phosphatase 2A. J Biol Chem 271(10):5589–5594

    Article  PubMed  CAS  Google Scholar 

  153. Sontag E, Nunbhakdi-Craig V, Lee G, Bloom GS, Mumby MC (1996) Regulation of the phosphorylation state and microtubule-binding activity of Tau by protein phosphatase 2A. Neuron 17(6):1201–1207

    Article  PubMed  CAS  Google Scholar 

  154. Gong C-X, Wang J-Z, Iqbal K, Grundke-Iqbal I (2003) Inhibition of protein phosphatase 2A induces phosphorylation and accumulation of neurofilaments in metabolically active rat brain slices. Neurosci Lett 340(2):107–110

    Article  PubMed  CAS  Google Scholar 

  155. Xiong Y, Jing X-P, Zhou X-W, Wang X-L, Yang Y, Sun X-Y et al (2013) Zinc induces protein phosphatase 2A inactivation and tau hyperphosphorylation through Src dependent PP2A (tyrosine 307) phosphorylation. Neurobiol Aging 34(3):745–756

    Article  PubMed  CAS  Google Scholar 

  156. Zhang C-E, Tian Q, Wei W, Peng J-H, Liu G-P, Zhou X-W et al (2008) Homocysteine induces tau phosphorylation by inactivating protein phosphatase 2A in rat hippocampus. Neurobiol Aging 29(11):1654–1665

    Article  PubMed  CAS  Google Scholar 

  157. Yu G, Yan T, Feng Y, Liu X, Xia Y, Luo H et al (2013) Ser9 phosphorylation causes cytoplasmic detention of I2PP2A/SET in Alzheimer disease. Neurobiol Aging 34(7):1748–1758

    Article  PubMed  CAS  Google Scholar 

  158. Chai GS, Jiang X, Ni ZF, Ma ZW, Xie AJ, Cheng XS et al (2013) Betaine attenuates Alzheimer-like pathological changes and memory deficits induced by homocysteine. J Neurochem 124(3):388–396

    Article  PubMed  CAS  Google Scholar 

  159. Cheng X-S, Zhao K-P, Jiang X, Du L-L, Li X-H, Ma Z-W et al (2013) Nmnat2 attenuates Tau phosphorylation through activation of PP2A. J Alzheimers Dis 36(1):185–195

    PubMed  CAS  Google Scholar 

  160. Xiu-Qing Y, Xiao-Xue Z, Yang-Yang Y, Bin L, Dan-Ju L, Dan L et al (2011) Glycogen synthase kinase-3beta regulates Tyr307 phosphorylation of protein phosphatase-2A via protein tyrosine phosphatase 1B but not Src. Biochem J 437(2):335–344

    Article  CAS  Google Scholar 

  161. Liu G-P, Zhang Y, Yao X-Q, Zhang C-E, Fang J, Wang Q et al (2008) Activation of glycogen synthase kinase-3 inhibits protein phosphatase-2A and the underlying mechanisms. Neurobiol Aging 29(9):1348–1358

    Article  PubMed  CAS  Google Scholar 

  162. Fraga CG (2005) Relevance, essentiality and toxicity of trace elements in human health. Mol Aspects Med 26(4):235–244

    Article  PubMed  CAS  Google Scholar 

  163. Bleackley MR, MacGillivray RT (2011) Transition metal homeostasis: from yeast to human disease. Biometals 24(5):785–809

    Article  PubMed  CAS  Google Scholar 

  164. Lovell M, Robertson J, Teesdale W, Campbell J, Markesbery W (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158(1):47–52

    Article  PubMed  CAS  Google Scholar 

  165. Lovell MA, Smith JL, Xiong S, Markesbery WR (2005) Alterations in zinc transporter protein-1 (ZnT-1) in the brain of subjects with mild cognitive impairment, early, and late-stage Alzheimer’s disease. Neurotox Res 7(4):265–271

    Article  PubMed  CAS  Google Scholar 

  166. Lyubartseva G, Smith JL, Markesbery WR, Lovell MA (2010) Alterations of zinc transporter proteins ZnT-1, ZnT-4 and ZnT-6 in preclinical Alzheimer’s disease brain. Brain Pathol 20(2):343–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Lleo A, Blesa R, Angelopoulos C, Pastor-Rubio P, Villa M, Oliva R et al (2002) Transferrin C2 allele, haemochromatosis gene mutations, and risk for Alzheimer’s disease. J Neurol Neurosurg Psychiatry 72(6):820–821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Zhang L-H, Wang X, Stoltenberg M, Danscher G, Huang L, Wang Z-Y (2008) Abundant expression of zinc transporters in the amyloid plaques of Alzheimer’s disease brain. Brain Res Bull 77(1):55–60

    Article  PubMed  CAS  Google Scholar 

  169. Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA et al (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30(3):665–676

    Article  PubMed  CAS  Google Scholar 

  170. Friedlich AL, Lee J-Y, van Groen T, Cherny RA, Volitakis I, Cole TB et al (2004) Neuronal zinc exchange with the blood vessel wall promotes cerebral amyloid angiopathy in an animal model of Alzheimer’s disease. J Neurosci 24(13):3453–3459

    Article  PubMed  CAS  Google Scholar 

  171. Lee J-Y, Friedman JE, Angel I, Kozak A, Koh J-Y (2004) The lipophilic metal chelator DP-109 reduces amyloid pathology in brains of human beta-amyloid precursor protein transgenic mice. Neurobiol Aging 25(10):1315–1321

    Article  PubMed  CAS  Google Scholar 

  172. Phinney AL, Drisaldi B, Schmidt SD, Lugowski S, Coronado V, Liang Y et al (2003) In vivo reduction of amyloid-beta by a mutant copper transporter. Proc Natl Acad Sci USA 100(24):14193–14198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Bush AI, Pettingell WH, Multhaup G, d Paradis M, Vonsattel J-P, Gusella JF et al (1994) Rapid induction of Alzheimer A beta amyloid formation by zinc. Science 265(5177):1464–1467

    Article  PubMed  CAS  Google Scholar 

  174. Tõugu V, Tiiman A, Palumaa P (2011) Interactions of Zn (II) and Cu (II) ions with Alzheimer’s amyloid-beta peptide. Metal ion binding, contribution to fibrillization and toxicity. Metallomics 3(3):250–261

    Article  PubMed  CAS  Google Scholar 

  175. Mantyh PW, Ghilardi JR, Rogers S, DeMaster E, Allen CJ, Stimson ER et al (1993) Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of β-amyloid peptide. J Neurochem 61(3):1171–1174

    Article  PubMed  CAS  Google Scholar 

  176. Lang M, Wang L, Fan Q, Xiao G, Wang X, Zhong Y et al (2012) Genetic inhibition of solute-linked carrier 39 family transporter 1 ameliorates Aβ pathology in a Drosophila model of Alzheimer’s disease. PLoS Genet 8(4):e1002683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Rival T, Page RM, Chandraratna DS, Sendall TJ, Ryder E, Liu B et al (2009) Fenton chemistry and oxidative stress mediate the toxicity of the β-amyloid peptide in a Drosophila model of Alzheimer’s disease. Eur J Neurosci 29(7):1335–1347

    Article  PubMed  PubMed Central  Google Scholar 

  178. Good PF, Perl DP, Bierer LM, Schmeidler J (1992) Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study. Ann Neurol 31(3):286–292

    Article  PubMed  CAS  Google Scholar 

  179. Yamamoto A, Shin RW, Hasegawa K, Naiki H, Sato H, Yoshimasu F et al (2002) Iron (III) induces aggregation of hyperphosphorylated τ and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer’s disease. J Neurochem 82(5):1137–1147

    Article  PubMed  CAS  Google Scholar 

  180. Zhou L-X, Du J-T, Zeng Z-Y, Wu W-H, Zhao Y-F, Kanazawa K et al (2007) Copper (II) modulates in vitro aggregation of a tau peptide. Peptides 28(11):2229–2234

    Article  PubMed  CAS  Google Scholar 

  181. Mo Z-Y, Zhu Y-Z, Zhu H-L, Fan J-B, Chen J, Liang Y (2009) Low micromolar zinc accelerates the fibrillization of human Tau via bridging of Cys-291 and Cys-322. J Biol Chem 284(50):34648–34657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Boom A, Authelet M, Dedecker R, Frédérick C, Van Heurck R, Daubie V et al (2009) Bimodal modulation of tau protein phosphorylation and conformation by extracellular Zn2+ in human-tau transfected cells. BBA Mol Cell Res 1793(6):1058–1067

    CAS  Google Scholar 

  183. Björkdahl C, Sjögren MJ, Winblad B, Pei J-J (2005) Zinc induces neurofilament phosphorylation independent of p70 S6 kinase in N2a cells. NeuroReport 16(6):591–595

    Article  PubMed  Google Scholar 

  184. Kim I, Park EJ, Seo J, Ko SJ, Lee J, Kim CH (2011) Zinc stimulates tau S214 phosphorylation by the activation of Raf/mitogen-activated protein kinase-kinase/extracellular signal-regulated kinase pathway. NeuroReport 22(16):839–844

    PubMed  CAS  Google Scholar 

  185. Sun X-Y, Wei Y-P, Xiong Y, Wang X-C, Xie A-J, Wang X-L et al (2012) Synaptic released zinc promotes tau hyperphosphorylation by inhibition of protein phosphatase 2A (PP2A). J Biol Chem 287(14):11174–11182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Xiao G, Fan Q, Wang X, Zhou B (2013) Huntington disease arises from a combinatory toxicity of polyglutamine and copper binding. Proc Natl Acad Sci USA 110(37):14995–15000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Kitazawa M, Cheng D, LaFerla FM (2009) Chronic copper exposure exacerbates both amyloid and tau pathology and selectively dysregulates cdk5 in a mouse model of AD. J Neurochem 108(6):1550–1560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Harris FM, Brecht WJ, Xu Q, Mahley RW, Huang Y (2004) Increased tau phosphorylation in apolipoprotein E4 transgenic mice is associated with activation of extracellular signal-regulated kinase: modulation by zinc. J Biol Chem 279(43):44795–44801

    Article  PubMed  CAS  Google Scholar 

  189. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858

    Article  PubMed  CAS  Google Scholar 

  190. Petrucelli L, Dickson D, Kehoe K, Taylor J, Snyder H, Grover A et al (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13(7):703–714

    Article  PubMed  CAS  Google Scholar 

  191. Shimura H, Schwartz D, Gygi SP, Kosik KS (2004) CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem 279(6):4869–4876

    Article  PubMed  CAS  Google Scholar 

  192. Dickey CA, Yue M, Lin W-L, Dickson DW, Dunmore JH, Lee WC et al (2006) Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho-and caspase-3-cleaved tau species. J Neurosci 26(26):6985–6996

    Article  PubMed  CAS  Google Scholar 

  193. Eroglu B, Moskophidis D, Mivechi NF (2010) Loss of Hsp110 leads to age-dependent tau hyperphosphorylation and early accumulation of insoluble amyloid beta. Mol Cell Biol 30(19):4626–4643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Elliott E, Laufer O, Ginzburg I (2009) BAG-1M is up-regulated in hippocampus of Alzheimer’s disease patients and associates with tau and APP proteins. J Neurochem 109(4):1168–1178

    Article  PubMed  CAS  Google Scholar 

  195. Elliott E, Tsvetkov P, Ginzburg I (2007) BAG-1 associates with Hsc70.Tau complex and regulates the proteasomal degradation of Tau protein. J Biol Chem 282(51):37276–37284

    Article  PubMed  CAS  Google Scholar 

  196. Cook C, Petrucelli L (2013) Tau triage decisions mediated by the chaperone network. J Alzheimers Dis 33(Suppl 1):S145–S151

    PubMed  Google Scholar 

  197. Dickey CA, Kamal A, Lundgren K, Klosak N, Bailey RM, Dunmore J et al (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117(3):648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Salminen A, Ojala J, Kaarniranta K, Hiltunen M, Soininen H (2011) Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer’s disease. Prog Neurobiol 93(1):99–110

    Article  PubMed  CAS  Google Scholar 

  199. Jicha GA, Bowser R, Kazam IG, Davies P (1997) Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau. J Neurosci Res 48(2):128–132

    Article  PubMed  CAS  Google Scholar 

  200. Dickey CA, Dunmore J, Lu B, Wang JW, Lee WC, Kamal A et al (2006) HSP induction mediates selective clearance of tau phosphorylated at proline-directed Ser/Thr sites but not KXGS (MARK) sites. FASEB J 20(6):753–755

    PubMed  CAS  Google Scholar 

  201. Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94(4):471–480

    Article  PubMed  CAS  Google Scholar 

  202. Riedel M, Goldbaum O, Schwarz L, Schmitt S, Richter-Landsberg C (2010) 17-AAG induces cytoplasmic alpha-synuclein aggregate clearance by induction of autophagy. PLoS One 5(1):0008753

    Article  CAS  Google Scholar 

  203. Banz VM, Medova M, Keogh A, Furer C, Zimmer Y, Candinas D et al (2009) Hsp90 transcriptionally and post-translationally regulates the expression of NDRG1 and maintains the stability of its modifying kinase GSK3beta. Biochim Biophys Acta 1793(10):1597–1603

    Article  PubMed  CAS  Google Scholar 

  204. Luo W, Dou F, Rodina A, Chip S, Kim J, Zhao Q et al (2007) Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proc Natl Acad Sci USA 104(22):9511–9516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Ho SW, Tsui YT, Wong TT, Cheung SK, Goggins WB, Yi LM et al (2013) Effects of 17-allylamino-17-demethoxygeldanamycin (17-AAG) in transgenic mouse models of frontotemporal lobar degeneration and Alzheimer’s disease. Transl Neurodegener 2(1):24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Chambraud B, Sardin E, Giustiniani J, Dounane O, Schumacher M, Goedert M et al (2010) A role for FKBP52 in Tau protein function. Proc Natl Acad Sci USA 107(6):2658–2663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Jinwal UK, Koren J 3rd, Borysov SI, Schmid AB, Abisambra JF, Blair LJ et al (2010) The Hsp90 cochaperone, FKBP51, increases Tau stability and polymerizes microtubules. J Neurosci 30(2):591–599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Kraemer BC, Burgess JK, Chen JH, Thomas JH, Schellenberg GD (2006) Molecular pathways that influence human tau-induced pathology in Caenorhabditis elegans. Hum Mol Genet 15(9):1483–1496

    Article  PubMed  CAS  Google Scholar 

  209. Blair LJ, Nordhues BA, Hill SE, Scaglione KM, O’Leary JC 3rd, Fontaine SN et al (2013) Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. J Clin Invest 123(10):4158–4169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Lee MJ, Lee JH, Rubinsztein DC (2013) Tau degradation: the ubiquitin–proteasome system versus the autophagy-lysosome system. Prog Neurobiol 105:49–59

    Article  PubMed  CAS  Google Scholar 

  211. Cripps D, Thomas SN, Jeng Y, Yang F, Davies P, Yang AJ (2006) Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-Tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J Biol Chem 281(16):10825–10838

    Article  PubMed  CAS  Google Scholar 

  212. Keck S, Nitsch R, Grune T, Ullrich O (2003) Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J Neurochem 85(1):115–122

    Article  PubMed  CAS  Google Scholar 

  213. Keller JN, Hanni KB, Markesbery WR (2000) Impaired proteasome function in Alzheimer’s disease. J Neurochem 75(1):436–439

    Article  PubMed  CAS  Google Scholar 

  214. David DC, Layfield R, Serpell L, Narain Y, Goedert M, Spillantini MG (2002) Proteasomal degradation of tau protein. J Neurochem 83(1):176–185

    Article  PubMed  CAS  Google Scholar 

  215. Lopez Salon M, Morelli L, Castano EM, Soto EF, Pasquini JM (2000) Defective ubiquitination of cerebral proteins in Alzheimer’s disease. J Neurosci Res 62(2):302–310

    Article  PubMed  CAS  Google Scholar 

  216. Cardozo C, Michaud C (2002) Proteasome-mediated degradation of tau proteins occurs independently of the chymotrypsin-like activity by a nonprocessive pathway. Arch Biochem Biophys 408(1):103–110

    Article  PubMed  CAS  Google Scholar 

  217. Nassif M, Hetz C (2012) Autophagy impairment: a crossroad between neurodegeneration and tauopathies. BMC Biol 10:78

    Article  PubMed  PubMed Central  Google Scholar 

  218. Rodríguez-Navarro JA, Rodríguez L, Casarejos MJ, Solano RM, Gómez A, Perucho J et al (2010) Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol Dis 39(3):423–438

    Article  PubMed  CAS  Google Scholar 

  219. Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert M (2012) Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain 135(Pt 7):2169–2177

    Article  PubMed  PubMed Central  Google Scholar 

  220. Ozcelik S, Fraser G, Castets P, Schaeffer V, Skachokova Z, Breu K et al (2013) Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice. PLoS One 8(5):e62459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Caccamo A, Magri A, Medina DX, Wisely EV, Lopez-Aranda MF, Silva AJ et al (2013) mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell 12(3):370–380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E, Mandelkow EM et al (2009) Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet 18(21):4153–4170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Inoue K, Rispoli J, Kaphzan H, Klann E, Chen EI, Kim J et al (2012) Macroautophagy deficiency mediates age-dependent neurodegeneration through a phospho-tau pathway. Mol Neurodegener 7:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Zhang B, Maiti A, Shively S, Lakhani F, McDonald-Jones G, Bruce J et al (2005) Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci USA 102(1):227–231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Zhang B, Carroll J, Trojanowski JQ, Yao Y, Iba M, Potuzak JS et al (2012) The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J Neurosci 32(11):3601–3611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Barten DM, Fanara P, Andorfer C, Hoque N, Wong PA, Husted KH et al (2012) Hyperdynamic microtubules, cognitive deficits, and pathology are improved in tau transgenic mice with low doses of the microtubule-stabilizing agent BMS-241027. J Neurosci 32(21):7137–7145

    Article  PubMed  CAS  Google Scholar 

  227. Quraishe S, Cowan CM, Mudher A (2013) NAP (davunetide) rescues neuronal dysfunction in a Drosophila model of tauopathy. Mol Psychiatry 18(7):834–842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Jouroukhin Y, Ostritsky R, Assaf Y, Pelled G, Giladi E, Gozes I (2013) NAP (davunetide) modifies disease progression in a mouse model of severe neurodegeneration: protection against impairments in axonal transport. Neurobiol Dis 56:79–94

    Article  PubMed  CAS  Google Scholar 

  229. Morimoto BH, Schmechel D, Hirman J, Blackwell A, Keith J, Gold M (2013) A double-blind, placebo-controlled, ascending-dose, randomized study to evaluate the safety, tolerability and effects on cognition of AL-108 after 12 weeks of intranasal administration in subjects with mild cognitive impairment. Dement Geriatr Cogn Disord 35(5–6):325–336

    Article  PubMed  CAS  Google Scholar 

  230. Medina M, Avila J (2014) New perspectives on the role of tau in Alzheimer’s disease. Implications for therapy. Biochem Pharmacol 88(4):540–547

    Article  PubMed  CAS  Google Scholar 

  231. Llorens-Martin M, Jurado J, Hernandez F, Avila J (2014) GSK-3beta, a pivotal kinase in Alzheimer disease. Front Mol Neurosci 7:46

    PubMed  Google Scholar 

  232. Medina M, Avila J (2010) Glycogen synthase kinase-3 (GSK-3) inhibitors for the treatment of Alzheimer’s disease. Curr Pharm Des 16(25):2790–2798

    Article  PubMed  CAS  Google Scholar 

  233. Hayward P (2004) Lithium reverses tau pathology in Drosophila. Lancet Neurol 3(5):265

    Article  Google Scholar 

  234. Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F et al (2005) Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci USA 102(19):6990–6995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Forlenza OV, Diniz BS, Radanovic M, Santos FS, Talib LL, Gattaz WF (2011) Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. Br J Psychiatry 198(5):351–356

    Article  PubMed  Google Scholar 

  236. Dominguez JM, Fuertes A, Orozco L, del Monte-Millan M, Delgado E, Medina M (2012) Evidence for irreversible inhibition of glycogen synthase kinase-3beta by tideglusib. J Biol Chem 287(2):893–904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Dunn N, Holmes C, Mullee M (2005) Does lithium therapy protect against the onset of dementia? Alzheimer Dis Assoc Disord 19(1):20–22

    Article  PubMed  CAS  Google Scholar 

  238. Hampel H, Ewers M, Burger K, Annas P, Mortberg A, Bogstedt A et al (2009) Lithium trial in Alzheimer’s disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J Clin Psychiatry 70(6):922–931

    Article  PubMed  CAS  Google Scholar 

  239. Serenó L, Coma M, Rodríguez M, Sánchez-Ferrer P, Sánchez MB, Gich I et al (2009) A novel GSK-3β inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiol Dis 35(3):359–367

    Article  PubMed  CAS  Google Scholar 

  240. Tolosa E, Litvan I, Höglinger GU, Burn D, Lees A, Andrés MV et al (2014) A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord 29(4):470–478

    Article  PubMed  CAS  Google Scholar 

  241. del Ser T, Lovestone S, Boada-Rovira M, Dubois B, Hüll M, Rinne J et al (2013) A phase II randomized, double-blind, parallel group, 26-week study of GSK-3 inhibitor tideglusib in Alzheimer’s disease (ARGO trial). Alzheimers Dement 9(4):P689–P690

    Google Scholar 

  242. Georgievska B, Sandin J, Doherty J, Mortberg A, Neelissen J, Andersson A et al (2013) AZD1080, a novel GSK3 inhibitor, rescues synaptic plasticity deficits in rodent brain and exhibits peripheral target engagement in humans. J Neurochem 125(3):446–456

    Article  PubMed  CAS  Google Scholar 

  243. Lau LF, Seymour PA, Sanner MA, Schachter JB (2002) Cdk5 as a drug target for the treatment of Alzheimer’s disease. J Mol Neurosci 19(3):267–273

    Article  PubMed  CAS  Google Scholar 

  244. Nygaard HB, van Dyck CH, Strittmatter SM (2014) Fyn kinase inhibition as a novel therapy for Alzheimer’s disease. Alzheimers Res Ther 6(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  245. Corcoran NM, Martin D, Hutter-Paier B, Windisch M, Nguyen T, Nheu L et al (2010) Sodium selenate specifically activates PP2A phosphatase, dephosphorylates tau and reverses memory deficits in an Alzheimer’s disease model. J Clin Neurosci 17(8):1025–1033

    Article  PubMed  CAS  Google Scholar 

  246. Kickstein E, Krauss S, Thornhill P, Rutschow D, Zeller R, Sharkey J et al (2010) Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc Natl Acad Sci USA 107(50):21830–21835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Voronkov M, Braithwaite SP, Stock JB (2011) Phosphoprotein phosphatase 2A: a novel druggable target for Alzheimer’s disease. Future Med Chem 3(7):821–833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Slupe AM, Merrill RA, Strack S (2011) Determinants for substrate specificity of protein phosphatase 2A. Enzyme Res 2011:398751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Wang X, Blanchard J, Kohlbrenner E, Clement N, Linden RM, Radu A et al (2010) The carboxy-terminal fragment of inhibitor-2 of protein phosphatase-2A induces Alzheimer disease pathology and cognitive impairment. FASEB J 24(11):4420–4432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Chohan MO, Khatoon S, Iqbal IG, Iqbal K (2006) Involvement of I2PP2A in the abnormal hyperphosphorylation of tau and its reversal by Memantine. FEBS Lett 580(16):3973–3979

    Article  PubMed  CAS  Google Scholar 

  251. Bulic B, Pickhardt M, Schmidt B, Mandelkow E-M, Waldmann H, Mandelkow E (2009) Development of tau aggregation inhibitors for Alzheimer’s disease. Angew Chem Int Ed Engl 48(10):1740–1752

    Article  PubMed  CAS  Google Scholar 

  252. Li C, Wang J, Zhou B (2010) The metal chelating and chaperoning effects of clioquinol: insights from yeast studies. J Alzheimers Dis 21(4):1249–1262

    PubMed  CAS  Google Scholar 

  253. Moret V, Laras Y, Pietrancosta N, Garino C, Quelever G, Rolland A et al (2006) 1,1′-Xylyl bis-1,4,8,11-tetraaza cyclotetradecane: a new potential copper chelator agent for neuroprotection in Alzheimer’s disease. Its comparative effects with clioquinol on rat brain copper distribution. Bioorg Med Chem Lett 16(12):3298–3301

    Article  PubMed  CAS  Google Scholar 

  254. Adlard PA, Bica L, White AR, Nurjono M, Filiz G, Crouch PJ et al (2011) Metal ionophore treatment restores dendritic spine density and synaptic protein levels in a mouse model of Alzheimer’s disease. PLoS One 6(3):e17669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Adlard PA, Cherny RA, Finkelstein DI, Gautier E, Robb E, Cortes M et al (2008) Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. Neuron 59(1):43–55

    Article  PubMed  CAS  Google Scholar 

  256. Bush AI (2008) Drug development based on the metals hypothesis of Alzheimer’s disease. J Alzheimers Dis 15(2):223–240

    PubMed  CAS  Google Scholar 

  257. Regland B, Lehmann W, Abedini I, Blennow K, Jonsson M, Karlsson I et al (2001) Treatment of Alzheimer’s disease with clioquinol. Dement Geriatr Cogn Disord 12(6):408–414

    Article  PubMed  CAS  Google Scholar 

  258. Jenagaratnam L, McShane R (2006) Clioquinol for the treatment of Alzheimer’s disease. Cochrane Database Syst Rev 1:CD005380

    PubMed  Google Scholar 

  259. Lannfelt L, Blennow K, Zetterberg H, Batsman S, Ames D, Harrison J et al (2008) Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol 7(9):779–786

    Article  PubMed  CAS  Google Scholar 

  260. Faux NG, Ritchie CW, Gunn A, Rembach A, Tsatsanis A, Bedo J et al (2010) PBT2 rapidly improves cognition in Alzheimer’s disease: additional phase II analyses. J Alzheimers Dis 20(2):509–516

    PubMed  CAS  Google Scholar 

  261. Taniguchi S, Suzuki N, Masuda M, S-i Hisanaga, Iwatsubo T, Goedert M et al (2005) Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J Biol Chem 280(9):7614–7623

    Article  PubMed  CAS  Google Scholar 

  262. Wischik CM, Bentham P, Wischik DJ, Seng KM (2008) O3-04-07: tau aggregation inhibitor (TAI) therapy with rember™ arrests disease progression in mild and moderate Alzheimer’s disease over 50 weeks. Alzheimers Dement 4(4):T167

    Article  Google Scholar 

  263. Grüninger F (2014) Drug development for tauopathies. Neuropathol Appl Neurobiol 41(1):81–96. doi:10.1111/nan.12192

    Article  CAS  Google Scholar 

  264. Santa-Maria I, Haggiagi A, Liu X, Wasserscheid J, Nelson PT, Dewar K et al (2012) The MAPT H1 haplotype is associated with tangle-predominant dementia. Acta Neuropathol 124(5):693–704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Baker M, Litvan I, Houlden H, Adamson J, Dickson D, Perez-Tur J et al (1999) Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet 8(4):711–715

    Article  PubMed  CAS  Google Scholar 

  266. Di Maria E, Tabaton M, Vigo T, Abbruzzese G, Bellone E, Donati C et al (2000) Corticobasal degeneration shares a common genetic background with progressive supranuclear palsy. Ann Neurol 47(3):374–377

    Article  PubMed  Google Scholar 

  267. Myers AJ, Pittman AM, Zhao AS, Rohrer K, Kaleem M, Marlowe L et al (2007) The MAPT H1c risk haplotype is associated with increased expression of tau and especially of 4 repeat containing transcripts. Neurobiol Dis 25(3):561–570

    Article  PubMed  CAS  Google Scholar 

  268. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T et al (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316(5825):750–754

    Article  PubMed  CAS  Google Scholar 

  269. Dawson HN, Cantillana V, Jansen M, Wang H, Vitek MP, Wilcock DM et al (2010) Loss of tau elicits axonal degeneration in a mouse model of Alzheimer’s disease. Neuroscience 169(1):516–531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  270. Van der Jeugd A, Hochgrafe K, Ahmed T, Decker JM, Sydow A, Hofmann A et al (2012) Cognitive defects are reversible in inducible mice expressing pro-aggregant full-length human Tau. Acta Neuropathol 123(6):787–805

    Article  PubMed  CAS  Google Scholar 

  271. Dickey CA, Ash P, Klosak N, Lee WC, Petrucelli L, Hutton M et al (2006) Pharmacologic reductions of total tau levels; implications for the role of microtubule dynamics in regulating tau expression. Mol Neurodegener 1:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  272. Lee BH, Lee MJ, Park S, Oh DC, Elsasser S, Chen PC et al (2010) Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467(7312):179–184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  273. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400(6740):173–177

    Article  PubMed  CAS  Google Scholar 

  274. Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H et al (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6(8):916–919

    Article  PubMed  CAS  Google Scholar 

  275. Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD et al (2000) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408(6815):979–982

    Article  PubMed  CAS  Google Scholar 

  276. DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM (2001) Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 98(15):8850–8855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  277. Boche D, Zotova E, Weller RO, Love S, Neal JW, Pickering RM et al (2008) Consequence of Abeta immunization on the vasculature of human Alzheimer’s disease brain. Brain 131(Pt 12):3299–3310

    Article  PubMed  CAS  Google Scholar 

  278. Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM (2007) Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci 27(34):9115–9129

    Article  PubMed  CAS  Google Scholar 

  279. Boimel M, Grigoriadis N, Lourbopoulos A, Haber E, Abramsky O, Rosenmann H (2010) Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice. Exp Neurol 224(2):472–485

    Article  PubMed  CAS  Google Scholar 

  280. Boutajangout A, Quartermain D, Sigurdsson EM (2010) Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J Neurosci 30(49):16559–16566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  281. Boutajangout A, Ingadottir J, Davies P, Sigurdsson EM (2011) Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem 118(4):658–667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We apologize for our likely omissions as well as inability to cite all relevant and important works in this review due to size limitation. We thank Tory Johnson (Stanford University, USA) and Richard Jiang Yang (Dartmouth College, New Hampshire, United States) for English editing. Our own research was primarily supported by the National Basic Research Program of China (2013CB910700) and by the National Science Foundation of China (31123004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Wu, Z. & Zhou, B. Behind the curtain of tauopathy: a show of multiple players orchestrating tau toxicity. Cell. Mol. Life Sci. 73, 1–21 (2016). https://doi.org/10.1007/s00018-015-2042-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2042-8

Keywords

Navigation