Skip to main content

Advertisement

Log in

p53 regulates cytoskeleton remodeling to suppress tumor progression

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cancer cells possess unique characteristics such as invasiveness, the ability to undergo epithelial–mesenchymal transition, and an inherent stemness. Cell morphology is altered during these processes and this is highly dependent on actin cytoskeleton remodeling. Regulation of the actin cytoskeleton is, therefore, important for determination of cell fate. Mutations within the TP53 (tumor suppressor p53) gene leading to loss or gain of function (GOF) of the protein are often observed in aggressive cancer cells. Here, we highlight the roles of p53 and its GOF mutants in cancer cell invasion from the perspective of the actin cytoskeleton; in particular its reorganization and regulation by cell adhesion molecules such as integrins and cadherins. We emphasize the multiple functions of p53 in the regulation of actin cytoskeleton remodeling in response to the extracellular microenvironment, and oncogene activation. Such an approach provides a new perspective in the consideration of novel targets for anti-cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Greenlee RT, Hill-Harmon MB, Murray T, Thun M (2001) Cancer statistics, 2001. CA Cancer J Clin 51:15–36

    Article  CAS  PubMed  Google Scholar 

  2. Petrie RJ, Yamada KM (2012) At the leading edge of three-dimensional cell migration. J Cell Sci 125:5917–5926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Faix J, Grosse R (2006) Staying in shape with formins. Dev Cell 10:693–706

    Article  CAS  PubMed  Google Scholar 

  4. Welch MD, Rosenblatt J, Skoble J, Portnoy DA, Mitchison TJ (1998) Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281:105–108

    Article  CAS  PubMed  Google Scholar 

  5. Quinlan ME, Heuser JE, Kerkhoff E, Mullins RD (2005) Drosophila Spire is an actin nucleation factor. Nature 433:382–388

    Article  CAS  PubMed  Google Scholar 

  6. Petrie RJ, Doyle AD, Yamada KM (2009) Random versus directionally persistent cell migration. Nat Rev Mol Cell Biol 10:538–549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Olson MF, Sahai E (2009) The actin cytoskeleton in cancer cell motility. Clin Exp Metastasis 26:273–287

    Article  PubMed  Google Scholar 

  8. Yamaguchi H, Condeelis J (2007) Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta 1773:642–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Cojoc D, Difato F, Ferrari E, Shahapure RB, Laishram J, Righi M, Di Fabrizio EM, Torre V (2007) Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components. PLoS ONE 2:e1072

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446–454

    Article  CAS  PubMed  Google Scholar 

  11. Albiges-Rizo C, Destaing O, Fourcade B, Planus E, Block MR (2009) Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions. J Cell Sci 122:3037–3049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Murphy DA, Courtneidge SA (2011) The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol 12:413–426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Jerrell RJ, Parekh A (2014) Cellular traction stresses mediate extracellular matrix degradation by invadopodia. Acta Biomater 10:1886–1896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Charras G, Paluch E (2008) Blebs lead the way: how to migrate without lamellipodia. Nat Rev Mol Cell Biol 9:730–736

    Article  CAS  PubMed  Google Scholar 

  15. Robertson AM, Bird CC, Waddell AW, Currie AR (1978) Morphological aspects of glucocorticoid-induced cell death in human lymphoblastoid cells. J Pathol 126:181–187

    Article  CAS  PubMed  Google Scholar 

  16. Fackler OT, Grosse R (2008) Cell motility through plasma membrane blebbing. J Cell Biol 181:879–884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Petrie RJ, Gavara N, Chadwick RS, Yamada KM (2012) Nonpolarized signaling reveals two distinct modes of 3D cell migration. J Cell Biol 197:439–455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Moore SW, Roca-Cusachs P, Sheetz MP (2010) Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. Dev Cell 19:194–206

    Article  CAS  PubMed  Google Scholar 

  19. Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392

    Article  CAS  PubMed  Google Scholar 

  20. Andreasen PA, Egelund R, Petersen HH (2000) The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci 57:25–40

    Article  CAS  PubMed  Google Scholar 

  21. Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100

    Article  PubMed  Google Scholar 

  22. Yilmaz M, Christofori G (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28:15–33

    Article  PubMed  Google Scholar 

  23. De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13:97–110

    Article  PubMed  CAS  Google Scholar 

  24. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284

    Article  CAS  PubMed  Google Scholar 

  26. Medema JP (2013) Cancer stem cells: the challenges ahead. Nat Cell Biol 15:338–344

    Article  CAS  PubMed  Google Scholar 

  27. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  CAS  PubMed  Google Scholar 

  28. Cabodi S, del Pilar Camacho-Leal M, Di Stefano P, Defilippi P (2010) Integrin signalling adaptors: not only figurants in the cancer story. Nat Rev Cancer 10:858–870

    Article  CAS  PubMed  Google Scholar 

  29. Vogel V, Sheetz MP (2009) Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways. Curr Opin Cell Biol 21:38–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ungefroren H, Sebens S, Seidl D, Lehnert H, Hass R (2011) Interaction of tumor cells with the microenvironment. Cell Commun Signal 9:18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Wels J, Kaplan RN, Rafii S, Lyden D (2008) Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev 22:559–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6:622–634

    Article  CAS  PubMed  Google Scholar 

  33. Huveneers S, de Rooij J (2013) Mechanosensitive systems at the cadherin-F-actin interface. J Cell Sci 126:403–413

    Article  CAS  PubMed  Google Scholar 

  34. Yao M, Qiu W, Liu R, Efremov AK, Cong P, Seddiki R, Payre M, Lim CT, Ladoux B, Mege RM, Yan J (2014) Force-dependent conformational switch of α-catenin controls vinculin binding. Nat Commun 5:4525

    CAS  PubMed  Google Scholar 

  35. Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) α-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12:533–542

    Article  CAS  PubMed  Google Scholar 

  36. Shih W, Yamada S (2012) N-cadherin-mediated cell–cell adhesion promotes cell migration in a three-dimensional matrix. J Cell Sci 125:3661–3670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299

    Article  CAS  PubMed  Google Scholar 

  38. Gu B, Zhu WG (2012) Surf the post-translational modification network of p53 regulation. Int J Biol Sci 8:672–684

    Article  PubMed Central  PubMed  Google Scholar 

  39. Kawauchi K, Araki K, Tobiume K, Tanaka N (2008) Activated p53 induces NF-κB DNA binding but suppresses its transcriptional activation. Biochem Biophys Res Commun 372:137–141

    Article  CAS  PubMed  Google Scholar 

  40. Kawauchi K, Araki K, Tobiume K, Tanaka N (2008) p53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation. Nat Cell Biol 10:611–618

    Article  CAS  PubMed  Google Scholar 

  41. Lin J, Tang H, Jin X, Jia G, Hsieh JT (2002) p53 regulates Stat3 phosphorylation and DNA binding activity in human prostate cancer cells expressing constitutively active Stat3. Oncogene 21:3082–3088

    Article  CAS  PubMed  Google Scholar 

  42. Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458:1127–1130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Rivlin N, Brosh R, Oren M, Rotter V (2011) Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer 2:466–474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Brachova P, Thiel KW, Leslie KK (2013) The consequence of oncomorphic TP53 mutations in ovarian cancer. Int J Mol Sci 14:19257–19275

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Strano S, Dell’Orso S, Di Agostino S, Fontemaggi G, Sacchi A, Blandino G (2007) Mutant p53: an oncogenic transcription factor. Oncogene 26:2212–2219

    Article  CAS  PubMed  Google Scholar 

  46. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28:622–629

    Article  CAS  PubMed  Google Scholar 

  47. Soussi T (2007) p53 alterations in human cancer: more questions than answers. Oncogene 26:2145–2156

    Article  CAS  PubMed  Google Scholar 

  48. Joerger AC, Fersht AR (2007) Structure–function–rescue: the diverse nature of common p53 cancer mutants. Oncogene 26:2226–2242

    Article  CAS  PubMed  Google Scholar 

  49. Lai MY, Chang HC, Li HP, Ku CK, Chen PJ, Sheu JC, Huang GT, Lee PH, Chen DS (1993) Splicing mutations of the p53 gene in human hepatocellular carcinoma. Cancer Res 53:1653–1656

    CAS  PubMed  Google Scholar 

  50. Hofstetter G, Berger A, Fiegl H, Slade N, Zoric A, Holzer B, Schuster E, Mobus VJ, Reimer D, Daxenbichler G, Marth C, Zeimet AG, Concin N, Zeillinger R (2010) Alternative splicing of p53 and p73: the novel p53 splice variant p53δ is an independent prognostic marker in ovarian cancer. Oncogene 29:1997–2004

    Article  CAS  PubMed  Google Scholar 

  51. Muller PA, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15:2–8

    Article  CAS  PubMed  Google Scholar 

  52. Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM, Valentin-Vega YA, Terzian T, Caldwell LC, Strong LC, El-Naggar AK, Lozano G (2004) Gain of function of a p53 hot spot mutation in a mouse model of Li–Fraumeni syndrome. Cell 119:861–872

    Article  CAS  PubMed  Google Scholar 

  53. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT, Crowley D, Jacks T (2004) Mutant p53 gain of function in two mouse models of Li–Fraumeni syndrome. Cell 119:847–860

    Article  CAS  PubMed  Google Scholar 

  54. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, Rustgi AK, Chang S, Tuveson DA (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7:469–483

    Article  CAS  PubMed  Google Scholar 

  55. Dong P, Karaayvaz M, Jia N, Kaneuchi M, Hamada J, Watari H, Sudo S, Ju J, Sakuragi N (2013) Mutant p53 gain-of-function induces epithelial–mesenchymal transition through modulation of the miR-130b–ZEB1 axis. Oncogene 32:3286–3295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Dong P, Xu Z, Jia N, Li D, Feng Y (2009) Elevated expression of p53 gain-of-function mutation R175H in endometrial cancer cells can increase the invasive phenotypes by activation of the EGFR/PI3K/AKT pathway. Mol Cancer 8:103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Muller PA, Trinidad AG, Timpson P, Morton JP, Zanivan S, van den Berghe PV, Nixon C, Karim SA, Caswell PT, Noll JE, Coffill CR, Lane DP, Sansom OJ, Neilsen PM, Norman JC, Vousden KH (2013) Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene 32:1252–1265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Timpson P, McGhee EJ, Morton JP, von Kriegsheim A, Schwarz JP, Karim SA, Doyle B, Quinn JA, Carragher NO, Edward M, Olson MF, Frame MC, Brunton VG, Sansom OJ, Anderson KI (2011) Spatial regulation of RhoA activity during pancreatic cancer cell invasion driven by mutant p53. Cancer Res 71:747–757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S, Lukashchuk N, Gillespie DA, Ludwig RL, Gosselin P, Cromer A, Brugge JS, Sansom OJ, Norman JC, Vousden KH (2009) Mutant p53 drives invasion by promoting integrin recycling. Cell 139:1327–1341

    Article  PubMed  Google Scholar 

  60. Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, Solari A, Bobisse S, Rondina MB, Guzzardo V, Parenti AR, Rosato A, Bicciato S, Balmain A, Piccolo S (2009) A Mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell 137:87–98

    Article  CAS  PubMed  Google Scholar 

  61. Noll JE, Jeffery J, Al-Ejeh F, Kumar R, Khanna KK, Callen DF, Neilsen PM (2012) Mutant p53 drives multinucleation and invasion through a process that is suppressed by ANKRD11. Oncogene 31:2836–2848

    Article  CAS  PubMed  Google Scholar 

  62. Yeudall WA, Vaughan CA, Miyazaki H, Ramamoorthy M, Choi MY, Chapman CG, Wang H, Black E, Bulysheva AA, Deb SP, Windle B, Deb S (2012) Gain-of-function mutant p53 upregulates CXC chemokines and enhances cell migration. Carcinogenesis 33:442–451

    Article  CAS  PubMed  Google Scholar 

  63. Yoshikawa K, Hamada J, Tada M, Kameyama T, Nakagawa K, Suzuki Y, Ikawa M, Hassan NM, Kitagawa Y, Moriuchi T (2010) Mutant p53 R248Q but not R248W enhances in vitro invasiveness of human lung cancer NCI-H1299 cells. Biomed Res 31:401–411

    Article  CAS  PubMed  Google Scholar 

  64. Huang X, Zhang Y, Tang Y, Butler N, Kim J, Guessous F, Schiff D, Mandell J, Abounader R (2013) A novel PTEN/mutant p53/c-Myc/Bcl-XL axis mediates context-dependent oncogenic effects of PTEN with implications for cancer prognosis and therapy. Neoplasia 15:952–965

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Coffill CR, Muller PA, Oh HK, Neo SP, Hogue KA, Cheok CF, Vousden KH, Lane DP, Blackstock WP, Gunaratne J (2012) Mutant p53 interactome identifies nardilysin as a p53R273H-specific binding partner that promotes invasion. EMBO Rep 13:638–644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Muller PA, Trinidad AG, Caswell PT, Norman JC, Vousden KH (2014) Mutant p53 regulates Dicer through p63-dependent and -independent mechanisms to promote an invasive phenotype. J Biol Chem 289:122–132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Girardini JE, Napoli M, Piazza S, Rustighi A, Marotta C, Radaelli E, Capaci V, Jordan L, Quinlan P, Thompson A, Mano M, Rosato A, Crook T, Scanziani E, Means AR, Lozano G, Schneider C, Del Sal G (2011) A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell 20:79–91

    Article  CAS  PubMed  Google Scholar 

  68. Arjonen A, Kaukonen R, Mattila E, Rouhi P, Hognas G, Sihto H, Miller BW, Morton JP, Bucher E, Taimen P, Virtakoivu R, Cao Y, Sansom OJ, Joensuu H, Ivaska J (2014) Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis. J Clin Invest 124:1069–1082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Li D, Marchenko ND, Moll UM (2011) SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6–Hsp90 chaperone axis. Cell Death Differ 18:1904–1913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Li D, Marchenko ND, Schulz R, Fischer V, Velasco-Hernandez T, Talos F, Moll UM (2011) Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells. Mol Cancer Res 9:577–588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Vaughan CA, Singh S, Windle B, Sankala H, Graves PR, Andrew Yeudall W, Deb SP, Deb S (2012) p53 mutants induce transcription of NF-κB2 in H1299 cells through CBP and STAT binding on the NF-κB2 promoter and gain of function activity. Arch Biochem Biophys 518:79–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Hulkower KI, Herber RL (2011) Cell migration and invasion assays as tools for drug discovery. Pharmaceutics 3:107–124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Yang A, Kaghad M, Caput D, McKeon F (2002) On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet 18:90–95

    Article  PubMed  Google Scholar 

  74. Melino G (2011) p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Differ 18:1487–1499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Krstic J, Santibanez JF (2014) Transforming growth factor-beta and matrix metalloproteinases: functional interactions in tumor stroma-infiltrating myeloid cells. ScientificWorldJournal 2014:521754

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Kitamura T, Qian BZ, Pollard JW (2015) Immune cell promotion of metastasis. Nat Rev Immunol 15:73–86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Oren M, Rotter V (2010) Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol 2:a001107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Feldser DM, Kostova KK, Winslow MM, Taylor SE, Cashman C, Whittaker CA, Sanchez-Rivera FJ, Resnick R, Bronson R, Hemann MT, Jacks T (2010) Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature 468:572–575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Yamauchi S, Hou YY, Guo AK, Hirata H, Nakajima W, Yip AK, Yu CH, Harada I, Chiam KH, Sawada Y, Tanaka N, Kawauchi K (2014) p53-mediated activation of the mitochondrial protease HtrA2/Omi prevents cell invasion. J Cell Biol 204:1191–1207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Xia M, Land H (2007) Tumor suppressor p53 restricts Ras stimulation of RhoA and cancer cell motility. Nat Struct Mol Biol 14:215–223

    Article  CAS  PubMed  Google Scholar 

  81. Mukhopadhyay UK, Mooney P, Jia L, Eves R, Raptis L, Mak AS (2010) Doubles game: Src-Stat3 versus p53–PTEN in cellular migration and invasion. Mol Cell Biol 30:4980–4995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Gadea G, de Toledo M, Anguille C, Roux P (2007) Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices. J Cell Biol 178:23–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Moran DM, Maki CG (2010) Nutlin-3a induces cytoskeletal rearrangement and inhibits the migration and invasion capacity of p53 wild-type cancer cells. Mol Cancer Ther 9:895–905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Kim EM, Park JK, Hwang SG, Kim WJ, Liu ZG, Kang SW, Um HD (2014) Nuclear and cytoplasmic p53 suppress cell invasion by inhibiting respiratory complex-I activity via Bcl-2 family proteins. Oncotarget 5:8452–8465

    Article  PubMed Central  PubMed  Google Scholar 

  85. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Zutter MM, Santoro SA, Staatz WD, Tsung YL (1995) Re-expression of the α2β1 integrin abrogates the malignant phenotype of breast carcinoma cells. Proc Natl Acad Sci USA 92:7411–7415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Kren A, Baeriswyl V, Lehembre F, Wunderlin C, Strittmatter K, Antoniadis H, Fassler R, Cavallaro U, Christofori G (2007) Increased tumor cell dissemination and cellular senescence in the absence of beta1-integrin function. EMBO J 26:2832–2842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Guo AK, Hou YY, Hirata H, Yamauchi S, Yip AK, Chiam KH, Tanaka N, Sawada Y, Kawauchi K (2014) Loss of p53 enhances NF-κB-dependent lamellipodia formation. J Cell Physiol 229:696–704

    Article  CAS  PubMed  Google Scholar 

  89. Vaillant F, Asselin-Labat ML, Shackleton M, Forrest NC, Lindeman GJ, Visvader JE (2008) The mammary progenitor marker CD61/β3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 68:7711–7717

    Article  CAS  PubMed  Google Scholar 

  90. Bon G, Di Carlo SE, Folgiero V, Avetrani P, Lazzari C, D’Orazi G, Brizzi MF, Sacchi A, Soddu S, Blandino G, Mottolese M, Falcioni R (2009) Negative regulation of β4 integrin transcription by homeodomain-interacting protein kinase 2 and p53 impairs tumor progression. Cancer Res 69:5978–5986

    Article  CAS  PubMed  Google Scholar 

  91. Janouskova H, Maglott A, Leger DY, Bossert C, Noulet F, Guerin E, Guenot D, Pinel S, Chastagner P, Plenat F, Entz-Werle N, Lehmann-Che J, Godet J, Martin S, Teisinger J, Dontenwill M (2012) Integrin α5β1 plays a critical role in resistance to temozolomide by interfering with the p53 pathway in high-grade glioma. Cancer Res 72:3463–3470

    Article  CAS  PubMed  Google Scholar 

  92. Janouskova H, Ray AM, Noulet F, Lelong-Rebel I, Choulier L, Schaffner F, Lehmann M, Martin S, Teisinger J, Dontenwill M (2013) Activation of p53 pathway by Nutlin-3a inhibits the expression of the therapeutic target α5 integrin in colon cancer cells. Cancer Lett 336:307–318

    Article  CAS  PubMed  Google Scholar 

  93. Qiu J, Wang G, Hu J, Peng Q, Zheng Y (2011) Id1-induced inhibition of p53 facilitates endothelial cell migration and tube formation by regulating the expression of beta1-integrin. Mol Cell Biochem 357:125–133

    Article  CAS  PubMed  Google Scholar 

  94. Berx G, van Roy F (2009) Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol 1:a003129

    Article  PubMed Central  PubMed  Google Scholar 

  95. Siemens H, Jackstadt R, Hunten S, Kaller M, Menssen A, Gotz U, Hermeking H (2011) miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial–mesenchymal transitions. Cell Cycle 10:4256–4271

    Article  CAS  PubMed  Google Scholar 

  96. Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH, Yuan A, Lin CW, Yang SC, Chan WK, Li KC, Hong TM, Yang PC (2009) p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 11:694–704

    Article  CAS  PubMed  Google Scholar 

  97. Kim J, Bae S, An S, Park JK, Kim EM, Hwang SG, Kim WJ, Um HD (2014) Cooperative actions of p21WAF1 and p53 induce Slug protein degradation and suppress cell invasion. EMBO Rep 15:1062–1068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Kim T, Veronese A, Pichiorri F, Lee TJ, Jeon YJ, Volinia S, Pineau P, Marchio A, Palatini J, Suh SS, Alder H, Liu CG, Dejean A, Croce CM (2011) p53 regulates epithelial–mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med 208:875–883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, Yu WH, Rehman SK, Hsu JL, Lee HH, Liu M, Chen CT, Yu D, Hung MC (2011) p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 13:317–323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Zhou X, Wang Y, Shan B, Han J, Zhu H, Lv Y, Fan X, Sang M, Liu XD, Liu W (2015) The downregulation of miR-200c/141 promotes ZEB1/2 expression and gastric cancer progression. Med Oncol 32:428

    Article  PubMed  CAS  Google Scholar 

  101. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA (2008) Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68:3645–3654

    Article  CAS  PubMed  Google Scholar 

  102. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–939

    Article  CAS  PubMed  Google Scholar 

  103. Shiota M, Izumi H, Onitsuka T, Miyamoto N, Kashiwagi E, Kidani A, Hirano G, Takahashi M, Naito S, Kohno K (2008) Twist and p53 reciprocally regulate target genes via direct interaction. Oncogene 27:5543–5553

    Article  CAS  PubMed  Google Scholar 

  104. McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC (2005) The role of focal-adhesion kinase in cancer—a new therapeutic opportunity. Nat Rev Cancer 5:505–515

    Article  CAS  PubMed  Google Scholar 

  105. Sulzmaier FJ, Jean C, Schlaepfer DD (2014) FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer 14:598–610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Golubovskaya V, Kaur A, Cance W (2004) Cloning and characterization of the promoter region of human focal adhesion kinase gene: nuclear factor kappa B and p53 binding sites. Biochim Biophys Acta 1678:111–125

    Article  CAS  PubMed  Google Scholar 

  107. Tanikawa C, Furukawa Y, Yoshida N, Arakawa H, Nakamura Y, Matsuda K (2009) XEDAR as a putative colorectal tumor suppressor that mediates p53-regulated anoikis pathway. Oncogene 28:3081–3092

    Article  CAS  PubMed  Google Scholar 

  108. Wen LP, Fahrni JA, Troie S, Guan JL, Orth K, Rosen GD (1997) Cleavage of focal adhesion kinase by caspases during apoptosis. J Biol Chem 272:26056–26061

    Article  CAS  PubMed  Google Scholar 

  109. Gervais FG, Thornberry NA, Ruffolo SC, Nicholson DW, Roy S (1998) Caspases cleave focal adhesion kinase during apoptosis to generate a FRNK-like polypeptide. J Biol Chem 273:17102–17108

    Article  CAS  PubMed  Google Scholar 

  110. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    Article  CAS  PubMed  Google Scholar 

  111. Rudrapatna VA, Bangi E, Cagan RL (2013) Caspase signalling in the absence of apoptosis drives Jnk-dependent invasion. EMBO Rep 14:172–177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Mashimo T, Watabe M, Hirota S, Hosobe S, Miura K, Tegtmeyer PJ, Rinker-Shaeffer CW, Watabe K (1998) The expression of the KAI1 gene, a tumor metastasis suppressor, is directly activated by p53. Proc Natl Acad Sci USA 95:11307–11311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Marreiros A, Dudgeon K, Dao V, Grimm MO, Czolij R, Crossley M, Jackson P (2005) KAI1 promoter activity is dependent on p53, junB and AP2: evidence for a possible mechanism underlying loss of KAI1 expression in cancer cells. Oncogene 24:637–649

    Article  CAS  PubMed  Google Scholar 

  114. Zhang XA, He B, Zhou B, Liu L (2003) Requirement of the p130CAS-Crk coupling for metastasis suppressor KAI1/CD82-mediated inhibition of cell migration. J Biol Chem 278:27319–27328

    Article  CAS  PubMed  Google Scholar 

  115. Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6:56–68

    Article  CAS  PubMed  Google Scholar 

  116. He B, Liu L, Cook GA, Grgurevich S, Jennings LK, Zhang XA (2005) Tetraspanin CD82 attenuates cellular morphogenesis through down-regulating integrin alpha6-mediated cell adhesion. J Biol Chem 280:3346–3354

    Article  CAS  PubMed  Google Scholar 

  117. Jee BK, Lee JY, Lim Y, Lee KH, Jo YH (2007) Effect of KAI1/CD82 on the beta1 integrin maturation in highly migratory carcinoma cells. Biochem Biophys Res Commun 359:703–708

    Article  CAS  PubMed  Google Scholar 

  118. Enoksson M, Li J, Ivancic MM, Timmer JC, Wildfang E, Eroshkin A, Salvesen GS, Tao WA (2007) Identification of proteolytic cleavage sites by quantitative proteomics. J Proteome Res 6:2850–2858

    Article  CAS  PubMed  Google Scholar 

  119. Irby RB, Yeatman TJ (2000) Role of Src expression and activation in human cancer. Oncogene 19:5636–5642

    Article  CAS  PubMed  Google Scholar 

  120. Linder S (2007) The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol 17:107–117

    Article  CAS  PubMed  Google Scholar 

  121. Aga M, Bradley JM, Keller KE, Kelley MJ, Acott TS (2008) Specialized podosome- or invadopodia-like structures (PILS) for focal trabecular meshwork extracellular matrix turnover. Invest Ophthalmol Vis Sci 49:5353–5365

    Article  PubMed Central  PubMed  Google Scholar 

  122. Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S, Mak TW (2001) Regulation of PTEN transcription by p53. Mol Cell 8:317–325

    Article  CAS  PubMed  Google Scholar 

  123. Mukhopadhyay UK, Eves R, Jia L, Mooney P, Mak AS (2009) p53 suppresses Src-induced podosome and rosette formation and cellular invasiveness through the upregulation of caldesmon. Mol Cell Biol 29:3088–3098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Sun S, Steinberg BM (2002) PTEN is a negative regulator of STAT3 activation in human papillomavirus-infected cells. J Gen Virol 83:1651–1658

    Article  CAS  PubMed  Google Scholar 

  125. Eves R, Webb BA, Zhou S, Mak AS (2006) Caldesmon is an integral component of podosomes in smooth muscle cells. J Cell Sci 119:1691–1702

    Article  CAS  PubMed  Google Scholar 

  126. Yoshio T, Morita T, Kimura Y, Tsujii M, Hayashi N, Sobue K (2007) Caldesmon suppresses cancer cell invasion by regulating podosome/invadopodium formation. FEBS Lett 581:3777–3782

    Article  CAS  PubMed  Google Scholar 

  127. Muller PA, Vousden KH, Norman JC (2011) p53 and its mutants in tumor cell migration and invasion. J Cell Biol 192:209–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Powell E, Piwnica-Worms D, Piwnica-Worms H (2014) Contribution of p53 to metastasis. Cancer Discov 4:405–414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P, Abell A, Johnson GL, Hahn KM, Danuser G (2009) Coordination of Rho GTPase activities during cell protrusion. Nature 461:99–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Guo F, Gao Y, Wang L, Zheng Y (2003) p19Arf-p53 tumor suppressor pathway regulates cell motility by suppression of phosphoinositide 3-kinase and Rac1 GTPase activities. J Biol Chem 278:14414–14419

    Article  CAS  PubMed  Google Scholar 

  131. Liliental J, Moon SY, Lesche R, Mamillapalli R, Li D, Zheng Y, Sun H, Wu H (2000) Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases. Curr Biol 10:401–404

    Article  CAS  PubMed  Google Scholar 

  132. Gadea G, Lapasset L, Gauthier-Rouviere C, Roux P (2002) Regulation of Cdc42-mediated morphological effects: a novel function for p53. EMBO J 21:2373–2382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Jagan I, Fatehullah A, Deevi RK, Bingham V, Campbell FC (2013) Rescue of glandular dysmorphogenesis in PTEN-deficient colorectal cancer epithelium by PPARgamma-targeted therapy. Oncogene 32:1305–1315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Guasch RM, Scambler P, Jones GE, Ridley AJ (1998) RhoE regulates actin cytoskeleton organization and cell migration. Mol Cell Biol 18:4761–4771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Nobes CD, Lauritzen I, Mattei MG, Paris S, Hall A, Chardin P (1998) A new member of the Rho family, Rnd1, promotes disassembly of actin filament structures and loss of cell adhesion. J Cell Biol 141:187–197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Van Aelst L, D’Souza-Schorey C (1997) Rho GTPases and signaling networks. Genes Dev 11:2295–2322

    Article  PubMed  Google Scholar 

  137. Kraning-Rush CM, Califano JP, Reinhart-King CA (2012) Cellular traction stresses increase with increasing metastatic potential. PLoS ONE 7:e32572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Croft DR, Crighton D, Samuel MS, Lourenco FC, Munro J, Wood J, Bensaad K, Vousden KH, Sansom OJ, Ryan KM, Olson MF (2011) p53-mediated transcriptional regulation and activation of the actin cytoskeleton regulatory RhoC to LIMK2 signaling pathway promotes cell survival. Cell Res 21:666–682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. van Nimwegen M J, Huigsloot M, Camier A, Tijdens I B, van de Water B (2006) Focal adhesion kinase and protein kinase B cooperate to suppress doxorubicin-induced apoptosis of breast tumor cells. Mol Pharmacol 70:1330–1339

    Article  PubMed  CAS  Google Scholar 

  140. Ongusaha PP, Kim HG, Boswell SA, Ridley AJ, Der CJ, Dotto GP, Kim YB, Aaronson SA, Lee SW (2006) RhoE is a pro-survival p53 target gene that inhibits ROCK I-mediated apoptosis in response to genotoxic stress. Curr Biol 16:2466–2472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Lefort K, Mandinova A, Ostano P, Kolev V, Calpini V, Kolfschoten I, Devgan V, Lieb J, Raffoul W, Hohl D, Neel V, Garlick J, Chiorino G, Dotto GP (2007) Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKα kinases. Genes Dev 21:562–577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Sethi N, Kang Y (2011) Notch signalling in cancer progression and bone metastasis. Br J Cancer 105:1805–1810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. White DP, Caswell PT, Norman JC (2007) αvβ3 and α5β1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration. J Cell Biol 177:515–525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Caswell PT, Chan M, Lindsay AJ, McCaffrey MW, Boettiger D, Norman JC (2008) Rab-coupling protein coordinates recycling of α5β1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J Cell Biol 183:143–155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Su X, Chakravarti D, Cho MS, Liu L, Gi YJ, Lin YL, Leung ML, El-Naggar A, Creighton CJ, Suraokar MB, Wistuba I, Flores ER (2010) TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 467:986–990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Jacquemet G, Green DM, Bridgewater RE, von Kriegsheim A, Humphries MJ, Norman JC, Caswell PT (2013) RCP-driven alpha5beta1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1–IQGAP1 complex. J Cell Biol 202:917–935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Jacquemet G, Morgan MR, Byron A, Humphries JD, Choi CK, Chen CS, Caswell PT, Humphries MJ (2013) Rac1 is deactivated at integrin activation sites through an IQGAP1–filamin-A–RacGAP1 pathway. J Cell Sci 126:4121–4135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. Zhang H, Berg JS, Li Z, Wang Y, Lang P, Sousa AD, Bhaskar A, Cheney RE, Stromblad S (2004) Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nat Cell Biol 6:523–531

    Article  PubMed  CAS  Google Scholar 

  149. Bossi G, Marampon F, Maor-Aloni R, Zani B, Rotter V, Oren M, Strano S, Blandino G, Sacchi A (2008) Conditional RNA interference in vivo to study mutant p53 oncogenic gain of function on tumor malignancy. Cell Cycle 7:1870–1879

    Article  CAS  PubMed  Google Scholar 

  150. Barone I, Brusco L, Gu G, Selever J, Beyer A, Covington KR, Tsimelzon A, Wang T, Hilsenbeck SG, Chamness GC, Ando S, Fuqua SA (2011) Loss of Rho GDIα and resistance to tamoxifen via effects on estrogen receptor alpha. J Natl Cancer Inst 103:538–552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Xiao Y, Lin VY, Ke S, Lin GE, Lin FT, Lin WC (2014) 14-3-3tau promotes breast cancer invasion and metastasis by inhibiting RhoGDIα. Mol Cell Biol 34:2635–2649

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  152. Zhao L, Wang H, Sun X, Ding Y (2010) Comparative proteomic analysis identifies proteins associated with the development and progression of colorectal carcinoma. FEBS J 277:4195–4204

    Article  CAS  PubMed  Google Scholar 

  153. Wang H, Wang B, Liao Q, An H, Li W, Jin X, Cui S, Zhao L (2014) Overexpression of RhoGDI, a novel predictor of distant metastasis, promotes cell proliferation and migration in hepatocellular carcinoma. FEBS Lett 588:503–508

    Article  CAS  PubMed  Google Scholar 

  154. Deakin NO, Turner CE (2008) Paxillin comes of age. J Cell Sci 121:2435–2444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  155. Brown MC, Turner CE (2004) Paxillin: adapting to change. Physiol Rev 84:1315–1339

    Article  CAS  PubMed  Google Scholar 

  156. Zhang Y, Yan W, Chen X (2011) Mutant p53 disrupts MCF-10A cell polarity in three-dimensional culture via epithelial-to-mesenchymal transitions. J Biol Chem 286:16218–16228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. Kogan-Sakin I, Tabach Y, Buganim Y, Molchadsky A, Solomon H, Madar S, Kamer I, Stambolsky P, Shelly A, Goldfinger N, Valsesia-Wittmann S, Puisieux A, Zundelevich A, Gal-Yam EN, Avivi C, Barshack I, Brait M, Sidransky D, Domany E, Rotter V (2011) Mutant p53(R175H) upregulates Twist1 expression and promotes epithelial–mesenchymal transition in immortalized prostate cells. Cell Death Differ 18:271–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  158. Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T, Parenti AR, Daidone MG, Bicciato S, Piccolo S (2010) A MicroRNA targeting dicer for metastasis control. Cell 141:1195–1207

    Article  CAS  PubMed  Google Scholar 

  159. Liao Y, He X, Qiu H, Che Q, Wang F, Lu W, Chen Z, Qiu M, Wang J, Wang H, Wan X (2014) Suppression of the epithelial–mesenchymal transition by SHARP1 is linked to the NOTCH1 signaling pathway in metastasis of endometrial cancer. BMC Cancer 14:487

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  160. Senturk S, Yao Z, Camiolo M, Stiles B, Rathod T, Walsh AM, Nemajerova A, Lazzara MJ, Altorki NK, Krainer A, Moll UM, Lowe SW, Cartegni L, Sordella R (2014) p53Psi is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state. Proc Natl Acad Sci USA 111:E3287–3296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  161. Sheng S (2004) The promise and challenge toward the clinical application of maspin in cancer. Front Biosci 9:2733–2745

    Article  PubMed  Google Scholar 

  162. Kunz C, Pebler S, Otte J, von der Ahe D (1995) Differential regulation of plasminogen activator and inhibitor gene transcription by the tumor suppressor p53. Nucleic Acids Res 23:3710–3717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. Zou Z, Gao C, Nagaich AK, Connell T, Saito S, Moul JW, Seth P, Appella E, Srivastava S (2000) p53 regulates the expression of the tumor suppressor gene maspin. J Biol Chem 275:6051–6054

    Article  CAS  PubMed  Google Scholar 

  164. Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3:489–501

    Article  CAS  PubMed  Google Scholar 

  165. McGowen R, Biliran H Jr, Sager R, Sheng S (2000) The surface of prostate carcinoma DU145 cells mediates the inhibition of urokinase-type plasminogen activator by maspin. Cancer Res 60:4771–4778

    CAS  PubMed  Google Scholar 

  166. Sheng S, Truong B, Fredrickson D, Wu R, Pardee AB, Sager R (1998) Tissue-type plasminogen activator is a target of the tumor suppressor gene maspin. Proc Natl Acad Sci USA 95:499–504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  167. Biliran H Jr, Sheng S (2001) Pleiotrophic inhibition of pericellular urokinase-type plasminogen activator system by endogenous tumor suppressive maspin. Cancer Res 61:8676–8682

    CAS  PubMed  Google Scholar 

  168. Sun Y, Zeng XR, Wenger L, Firestein GS, Cheung HS (2004) P53 down-regulates matrix metalloproteinase-1 by targeting the communications between AP-1 and the basal transcription complex. J Cell Biochem 92:258–269

    Article  CAS  PubMed  Google Scholar 

  169. Liu J, Zhan M, Hannay JA, Das P, Bolshakov SV, Kotilingam D, Yu D, Lazar AF, Pollock RE, Lev D (2006) Wild-type p53 inhibits nuclear factor-kappaB-induced matrix metalloproteinase-9 promoter activation: implications for soft tissue sarcoma growth and metastasis. Mol Cancer Res 4:803–810

    Article  CAS  PubMed  Google Scholar 

  170. Sun Y, Cheung JM, Martel-Pelletier J, Pelletier JP, Wenger L, Altman RD, Howell DS, Cheung HS (2000) Wild type and mutant p53 differentially regulate the gene expression of human collagenase-3 (hMMP-13). J Biol Chem 275:11327–11332

    Article  CAS  PubMed  Google Scholar 

  171. Ala-aho R, Grenman R, Seth P, Kahari VM (2002) Adenoviral delivery of p53 gene suppresses expression of collagenase-3 (MMP-13) in squamous carcinoma cells. Oncogene 21:1187–1195

    Article  CAS  PubMed  Google Scholar 

  172. Bian J, Sun Y (1997) Transcriptional activation by p53 of the human type IV collagenase (gelatinase A or matrix metalloproteinase 2) promoter. Mol Cell Biol 17:6330–6338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  173. Toschi E, Rota R, Antonini A, Melillo G, Capogrossi MC (2000) Wild-type p53 gene transfer inhibits invasion and reduces matrix metalloproteinase-2 levels in p53-mutated human melanoma cells. J Invest Dermatol 114:1188–1194

    Article  CAS  PubMed  Google Scholar 

  174. Chen H, Yuan Y, Zhang C, Luo A, Ding F, Ma J, Yang S, Tian Y, Tong T, Zhan Q, Liu Z (2012) Involvement of S100A14 protein in cell invasion by affecting expression and function of matrix metalloproteinase (MMP)-2 via p53-dependent transcriptional regulation. J Biol Chem 287:17109–17119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  175. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A (2008) Generation of breast cancer stem cells through epithelial–mesenchymal transition. PLoS ONE 3:e2888

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  176. Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, Brunton VG, Morton J, Sansom O, Schuler J, Stemmler MP, Herzberger C, Hopt U, Keck T, Brabletz S, Brabletz T (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11:1487–1495

    Article  CAS  PubMed  Google Scholar 

  177. Fan F, Samuel S, Evans KW, Lu J, Xia L, Zhou Y, Sceusi E, Tozzi F, Ye XC, Mani SA, Ellis LM (2012) Overexpression of snail induces epithelial–mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells. Cancer Med 1:5–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  178. Godar S, Ince TA, Bell GW, Feldser D, Donaher JL, Bergh J, Liu A, Miu K, Watnick RS, Reinhardt F, McAllister SS, Jacks T, Weinberg RA (2008) Growth-inhibitory and tumor-suppressive functions of p53 depend on its repression of CD44 expression. Cell 134:62–73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  179. Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E, Xu Y (2005) p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7:165–171

    Article  CAS  PubMed  Google Scholar 

  180. Qin H, Yu T, Qing T, Liu Y, Zhao Y, Cai J, Li J, Song Z, Qu X, Zhou P, Wu J, Ding M, Deng H (2007) Regulation of apoptosis and differentiation by p53 in human embryonic stem cells. J Biol Chem 282:5842–5852

    Article  CAS  PubMed  Google Scholar 

  181. Hermeking H (2012) MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12:613–626

    Article  CAS  PubMed  Google Scholar 

  182. Choi YJ, Lin CP, Ho JJ, He X, Okada N, Bu P, Zhong Y, Kim SY, Bennett MJ, Chen C, Ozturk A, Hicks GG, Hannon GJ, He L (2011) miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol 13:1353–1360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  183. Ogawa K, Nishinakamura R, Iwamatsu Y, Shimosato D, Niwa H (2006) Synergistic action of Wnt and LIF in maintaining pluripotency of mouse ES cells. Biochem Biophys Res Commun 343:159–166

    Article  CAS  PubMed  Google Scholar 

  184. Lee KH, Li M, Michalowski AM, Zhang X, Liao H, Chen L, Xu Y, Wu X, Huang J (2010) A genomewide study identifies the Wnt signaling pathway as a major target of p53 in murine embryonic stem cells. Proc Natl Acad Sci USA 107:69–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  185. Kim NH, Kim HS, Kim NG, Lee I, Choi HS, Li XY, Kang SE, Cha SY, Ryu JK, Na JM, Park C, Kim K, Lee S, Gumbiner BM, Yook JI, Weiss SJ (2011) p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci Signal 4:ra71

    PubMed Central  PubMed  Google Scholar 

  186. Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45

    Article  CAS  PubMed  Google Scholar 

  187. Orgaz JL, Pandya P, Dalmeida R, Karagiannis P, Sanchez-Laorden B, Viros A, Albrengues J, Nestle FO, Ridley AJ, Gaggioli C, Marais R, Karagiannis SN, Sanz-Moreno V (2014) Diverse matrix metalloproteinase functions regulate cancer amoeboid migration. Nat Commun 5:4255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  188. Jurmeister S, Baumann M, Balwierz A, Keklikoglou I, Ward A, Uhlmann S, Zhang JD, Wiemann S, Sahin O (2012) MicroRNA-200c represses migration and invasion of breast cancer cells by targeting actin-regulatory proteins FHOD1 and PPM1F. Mol Cell Biol 32:633–651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  189. Nanba D, Toki F, Matsushita N, Matsushita S, Higashiyama S, Barrandon Y (2013) Actin filament dynamics impacts keratinocyte stem cell maintenance. EMBO Mol Med 5:640–653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  190. Liu J, Tan Y, Zhang H, Zhang Y, Xu P, Chen J, Poh YC, Tang K, Wang N, Huang B (2012) Soft fibrin gels promote selection and growth of tumorigenic cells. Nat Mater 11:734–741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  191. Schramek D, Sendoel A, Segal JP, Beronja S, Heller E, Oristian D, Reva B, Fuchs E (2014) Direct in vivo RNAi screen unveils myosin IIa as a tumor suppressor of squamous cell carcinomas. Science 343:309–313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  192. Sarig R, Rivlin N, Brosh R, Bornstein C, Kamer I, Ezra O, Molchadsky A, Goldfinger N, Brenner O, Rotter V (2010) Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J Exp Med 207:2127–2140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  193. Yi L, Lu C, Hu W, Sun Y, Levine AJ (2012) Multiple roles of p53-related pathways in somatic cell reprogramming and stem cell differentiation. Cancer Res 72:5635–5645

    Article  CAS  PubMed  Google Scholar 

  194. Iskratsch T, Wolfenson H, Sheetz MP (2014) Appreciating force and shape—the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol 15:825–833

    Article  CAS  PubMed  Google Scholar 

  195. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA (2014) Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014:149185

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  196. Keely PJ (2011) Mechanisms by which the extracellular matrix and integrin signaling act to regulate the switch between tumor suppression and tumor promotion. J Mammary Gland Biol Neoplasia 16:205–219

    Article  PubMed  Google Scholar 

  197. Kim MR, Chang HW, Nam HY, Han MW, Moon SY, Kim HJ, Lee HJ, Roh JL, Kim SW, Kim SY (2012) Activation of p53–p21 is closely associated with the acquisition of resistance to apoptosis caused by beta1-integrin silencing in head and neck cancer cells. Biochem Biophys Res Commun 418:260–266

    Article  CAS  PubMed  Google Scholar 

  198. Puisieux A, Brabletz T, Caramel J (2014) Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 16:488–494

    Article  CAS  PubMed  Google Scholar 

  199. Khoo KH, Verma CS, Lane DP (2014) Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov 13:217–236

    Article  CAS  PubMed  Google Scholar 

  200. Kawauchi K, Wolf SJ (2014) Understanding p53: new insights into tumor suppression. Expert Rev Anticancer Ther 14:1101–1103

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shota Yamauchi and Mr. Toshiya Kotari for discussion. This work was supported by JSPS KAKENHI Grant Number 26890024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Kawauchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araki, K., Ebata, T., Guo, A.K. et al. p53 regulates cytoskeleton remodeling to suppress tumor progression. Cell. Mol. Life Sci. 72, 4077–4094 (2015). https://doi.org/10.1007/s00018-015-1989-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1989-9

Keywords

Navigation