Skip to main content

Advertisement

Log in

Connexins and pannexins in the integumentary system: the skin and appendages

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The integumentary system comprises the skin and its appendages, which includes hair, nails, feathers, sebaceous and eccrine glands. In this review, we focus on the expression profile of connexins and pannexins throughout the integumentary system in mammals, birds and fish. We provide a picture of the complexity of the connexin/pannexin network illustrating functional importance of these proteins in maintaining the integrity of the epidermal barrier. The differential regulation and expression of connexins and pannexins during skin renewal, together with a number of epidermal, hair and nail abnormalities associated with mutations in connexins, emphasize that the correct balance of connexin and pannexin expression is critical for maintenance of the skin and its appendages with both channel and non-channel functions playing profound roles. Changes in connexin expression during both hair and feather regeneration provide suggestions of specialized communication compartments. Finally, we discuss the potential use of zebrafish as a model for connexin skin biology, where evidence mounts that differential connexin expression is involved in skin patterning and pigmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

Cx:

Connexin

ECM:

Extracellular matrix

IRS:

Inner root sheath

KO:

Knockout

ODDD:

Oculodentodigital dysplasia

ORS:

Outer root sheath

Panx:

Pannexin

References

  1. Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17(12):1063–1072

    Article  PubMed  Google Scholar 

  2. Wu P, Hou L, Plikus M, Hughes M, Scehnet J, Suksaweang S, Widelitz R, Jiang TX, Chuong CM (2004) Evo-Devo of amniote integuments and appendages. Int J Dev Biol 48(2–3):249–270. doi:10.1387/ijdb.041825pw

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10(3):207–217. doi:10.1038/nrm2636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Martin PE, Easton JA, Hodgins MB, Wright CS (2014) Connexins: sensors of epidermal integrity that are therapeutic targets. FEBS Lett 588(8):1304–1314. doi:10.1016/j.febslet.2014.02.048

    Article  CAS  PubMed  Google Scholar 

  5. Laird DW (2006) Life cycle of connexins in health and disease. Biochem J 394(Pt 3):527–543. doi:10.1042/BJ20051922

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Evans WH, De Vuyst E, Leybaert L (2006) The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 397(1):1–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Robertson J, Lang S, Lambert PA, Martin PE (2010) Peptidoglycan derived from Staphylococcus epidermidis induces Connexin43 hemichannel activity with consequences on the innate immune response in endothelial cells. Biochem J 432(1):133–143. doi:10.1042/BJ20091753

    Article  CAS  PubMed  Google Scholar 

  8. Schalper KA, Riquelme MA, Branes MC, Martinez AD, Vega JL, Berthoud VM, Bennett MV, Saez JC (2012) Modulation of gap junction channels and hemichannels by growth factors. Mol BioSyst 8(3):685–698. doi:10.1039/c1mb05294b

    Article  CAS  PubMed  Google Scholar 

  9. Evans WH, Martin PE (2002) Gap junctions: structure and function (Review). Mol Membr Biol 19(2):121–136. doi:10.1080/09687680210139839

    Article  CAS  PubMed  Google Scholar 

  10. Di WL, Rugg EL, Leigh IM, Kelsell DP (2001) Multiple epidermal connexins are expressed in different keratinocyte subpopulations including connexin 31. J Invest Dermatol 117(4):958–964

    Article  CAS  PubMed  Google Scholar 

  11. Kretz M, Euwens C, Hombach S, Eckardt D, Teubner B, Traub O, Willecke K, Ott T (2003) Altered connexin expression and wound healing in the epidermis of connexin-deficient mice. J Cell Sci 116(Pt 16):3443–3452. doi:10.1242/jcs.00638

    Article  CAS  PubMed  Google Scholar 

  12. Koval M, Isakson BE, Gourdie RG (2014) Connexins, pannexins and innexins: protein cousins with overlapping functions. FEBS Lett. doi:10.1016/j.febslet.2014.03.001

  13. D’Hondt C, Ponsaerts R, De Smedt H, Bultynck G, Himpens B (2009) Pannexins, distant relatives of the connexin family with specific cellular functions? BioEssays 31(9):953–974. doi:10.1002/bies.200800236

    Article  PubMed  Google Scholar 

  14. Sandilos JK, Bayliss DA (2012) Physiological mechanisms for the modulation of pannexin 1 channel activity. J Physiol 590(Pt 24):6257–6266. doi:10.1113/jphysiol.2012.240911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Makarenkova HP, Shestopalov VI (2014) The role of pannexin hemichannels in inflammation and regeneration. Front Physiol 5:63. doi:10.3389/fphys.2014.00063

    Article  PubMed Central  PubMed  Google Scholar 

  16. Penuela S, Gehi R (1828) Laird DW (2013) The biochemistry and function of pannexin channels. Biochim Biophys Acta 1:15–22. doi:10.1016/j.bbamem.2012.01.017

    Google Scholar 

  17. Penuela S, Bhalla R, Gong XQ, Cowan KN, Celetti SJ, Cowan BJ, Bai D, Shao Q, Laird DW (2007) Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J Cell Sci 120(Pt 21):3772–3783. doi:10.1242/jcs.009514

    Article  CAS  PubMed  Google Scholar 

  18. Celetti SJ, Cowan KN, Penuela S, Shao Q, Churko J, Laird DW (2010) Implications of pannexin 1 and pannexin 3 for keratinocyte differentiation. J Cell Sci 123(Pt 8):1363–1372. doi:10.1242/jcs.056093

    Article  CAS  PubMed  Google Scholar 

  19. Swayne LA, Sorbara CD, Bennett SA (2010) Pannexin 2 is expressed by postnatal hippocampal neural progenitors and modulates neuronal commitment. J Biol Chem 285(32):24977–24986. doi:10.1074/jbc.M110.130054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bond SR, Lau A, Penuela S, Sampaio AV, Underhill TM, Laird DW, Naus CC (2011) Pannexin 3 is a novel target for Runx2, expressed by osteoblasts and mature growth plate chondrocytes. J Bon Min Res 26(12):2911–2922. doi:10.1002/jbmr.509

    Article  CAS  Google Scholar 

  21. Bao L, Locovei S, Dahl G (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572(1–3):65–68. doi:10.1016/j.febslet.2004.07.009

    Article  CAS  PubMed  Google Scholar 

  22. Beckel JM, Argall AJ, Lim JC, Xia J, Lu W, Coffey EE, Macarak EJ, Shahidullah M, Delamere NA, Zode GS, Sheffield VC, Shestopalov VI, Laties AM, Mitchell CH (2014) Mechanosensitive release of adenosine 5′-triphosphate through pannexin channels and mechanosensitive upregulation of pannexin channels in optic nerve head astrocytes: a mechanism for purinergic involvement in chronic strain. Glia 62(9):1486–1501. doi:10.1002/glia.22695

    Article  PubMed  Google Scholar 

  23. Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ, Penuela S, Laird DW, Salvesen GS, Isakson BE, Bayliss DA, Ravichandran KS (2010) Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467(7317):863–867. doi:10.1038/nature09413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Martin PE, van Steensel M (2015) Connexins and skin disease: insights into the role of beta connexins in skin homeostasis. Cell Tissue Res. doi:10.1007/s00441-014-2094-3

    PubMed  Google Scholar 

  25. Churko JM, Laird DW (2013) Gap junction remodeling in skin repair following wounding and disease. Physiology (Bethesda, Md) 28 (3):190–198. doi:10.1152/physiol.00058.2012

  26. Becker DL, Thrasivoulou C, Phillips AR (2012) Connexins in wound healing; perspectives in diabetic patients. Biochim Biophys Acta 1818(8):2068–2075. doi:10.1016/j.bbamem.2011.11.017

    Article  CAS  PubMed  Google Scholar 

  27. Scott CA, Tattersall D, O’Toole EA, Kelsell DP (2012) Connexins in epidermal homeostasis and skin disease. Biochim Biophys Acta 1818(8):1952–1961. doi:10.1016/j.bbamem.2011.09.004

    Article  CAS  PubMed  Google Scholar 

  28. Xu J, Nicholson BJ (2013) The role of connexins in ear and skin physiology—functional insights from disease-associated mutations. Biochim Biophys Acta 1828(1):167–178. doi:10.1016/j.bbamem.2012.06.024

  29. Penuela S, Kelly JJ, Churko JM, Barr KJ, Berger AC, Laird DW (2014) Panx1 regulates cellular properties of keratinocytes and dermal fibroblasts in skin development and wound healing. J Invest Dermatol 134(7):2026–2035. doi:10.1038/jid.2014.86

    Article  CAS  PubMed  Google Scholar 

  30. Ek-Vitorin JF, Burt JM (2013) Structural basis for the selective permeability of channels made of communicating junction proteins. Biochim Biophys Acta 1828(1):51–68. doi:10.1016/j.bbamem.2012.02.003

  31. Brissette JL, Kumar NM, Gilula NB, Hall JE, Dotto GP (1994) Switch in gap junction protein expression is associated with selective changes in junctional permeability during keratinocyte differentiation. Proc Natl Acad Sci USA 91(14):6453–6457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Solan JL, Lampe PD (2009) Connexin43 phosphorylation: structural changes and biological effects. Biochem J 419(2):261–272. doi:10.1042/bj20082319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Donnelly S, English G, de Zwart-Storm EA, Lang S, van Steensel MA, Martin PE (2012) Differential susceptibility of Cx26 mutations associated with epidermal dysplasias to peptidoglycan derived from Staphylococcus aureus and Staphylococcus epidermidis. Exp Dermatol 21(8):592–598. doi:10.1111/j.1600-0625.2012.01521.x

    Article  CAS  PubMed  Google Scholar 

  34. Brandner JM, Houdek P, Husing B, Kaiser C, Moll I (2004) Connexins 26, 30, and 43: differences among spontaneous, chronic, and accelerated human wound healing. J Invest Dermatol 122(5):1310–1320. doi:10.1111/j.0022-202X.2004.22529.x

    Article  CAS  PubMed  Google Scholar 

  35. Churko JM, Shao Q, Gong XQ, Swoboda KJ, Bai D, Sampson J, Laird DW (2011) Human dermal fibroblasts derived from oculodentodigital dysplasia patients suggest that patients may have wound-healing defects. Hum Mutat 32(4):456–466. doi:10.1002/humu.21472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Wang CM, Lincoln J, Cook JE, Becker DL (2007) Abnormal connexin expression underlies delayed wound healing in diabetic skin. Diabetes 56(11):2809–2817. doi:10.2337/db07-0613

    Article  CAS  PubMed  Google Scholar 

  37. Grupcheva CN, Laux WT, Rupenthal ID, McGhee J, McGhee CN, Green CR (2012) Improved corneal wound healing through modulation of gap junction communication using connexin43-specific antisense oligodeoxynucleotides. Invest Ophthalmol Vis Sci 53(3):1130–1138. doi:10.1167/iovs.11-8711

    Article  CAS  PubMed  Google Scholar 

  38. Wright CS, Pollok S, Flint DJ, Brandner JM, Martin PE (2012) The connexin mimetic peptide Gap27 increases human dermal fibroblast migration in hyperglycemic and hyperinsulinemic conditions in vitro. J Cell Physiol 227(1):77–87. doi:10.1002/jcp.22705

    Article  CAS  PubMed  Google Scholar 

  39. Wright CS, van Steensel MA, Hodgins MB, Martin PE (2009) Connexin mimetic peptides improve cell migration rates of human epidermal keratinocytes and dermal fibroblasts in vitro. Wound Repair Regen 17(2):240–249. doi:10.1111/j.1524-475X.2009.00471.x

    Article  PubMed  Google Scholar 

  40. Ghatnekar GS, Elstrom TA (2013) Translational strategies for the development of a wound healing technology (idea) from bench to bedside. Methods Mol Biol 1037:567–581. doi:10.1007/978-1-62703-505-7_33

    Article  CAS  PubMed  Google Scholar 

  41. Ghatnekar GS, Grek CL, Armstrong DG, Desai SC, Gourdie RG (2015) The effect of a connexin43-based Peptide on the healing of chronic venous leg ulcers: a multicenter, randomized trial. J Invest Dermatol 135(1):289–298. doi:10.1038/jid.2014.318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Solan JL, Lampe PD (2014) Specific Cx43 phosphorylation events regulate gap junction turnover in vivo. FEBS Lett 588(8):1423–1429. doi:10.1016/j.febslet.2014.01.049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Lucke T, Choudhry R, Thom R, Selmer IS, Burden AD, Hodgins MB (1999) Upregulation of connexin 26 is a feature of keratinocyte differentiation in hyperproliferative epidermis, vaginal epithelium, and buccal epithelium. J Invest Dermatol 112(3):354–361. doi:10.1046/j.1523-1747.1999.00512.x

    Article  CAS  PubMed  Google Scholar 

  44. Djalilian AR, McGaughey D, Patel S, Seo EY, Yang C, Cheng J, Tomic M, Sinha S, Ishida-Yamamoto A, Segre JA (2006) Connexin 26 regulates epidermal barrier and wound remodeling and promotes psoriasiform response. J Clin Invest 116(5):1243–1253. doi:10.1172/JCI27186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Alibardi L (2014) Formation of adherens and communicating junctions coordinate the differentiation of the shedding-layer and beta-epidermal generation in regenerating lizard epidermis. J Morphol 275(6):693–702

    Article  CAS  PubMed  Google Scholar 

  46. Cowan KN, Langlois S, Penuela S, Cowan BJ, Laird DW (2012) Pannexin1 and Pannexin3 exhibit distinct localisation patterns in human skin appendages and are regulated during keratinocyte differentiation and carcinogenesis. Cell Commun Adhes 19:45–53

    Article  CAS  PubMed  Google Scholar 

  47. Coelho M, Oliveira T, Fernandes R (2013) Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci AMS 9(2):191–200. doi:10.5114/aoms.2013.33181

    Article  CAS  Google Scholar 

  48. Burnstock G, Knight GE, Greig AV (2012) Purinergic signaling in healthy and diseased skin. J Invest Dermatol 132(3 Pt 1):526–546. doi:10.1038/jid.2011.344

    Article  CAS  PubMed  Google Scholar 

  49. Bhalla-Gehi R, Penuela S, Churko JM, Shao Q, Laird DW (2010) Pannexin1 and pannexin3 delivery, cell surface dynamics, and cytoskeletal interactions. J Biol Chem 285(12):9147–9160. doi:10.1074/jbc.M109.082008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Larue L, Delmas V (2006) The WNT/Beta-catenin pathway in melanoma. Front Biosci 11:733–742

    Article  CAS  PubMed  Google Scholar 

  51. Penuela S, Gyenis L, Ablack A, Churko JM, Berger AC, Litchfield DW, Lewis JD, Laird DW (2012) Loss of pannexin 1 attenuates melanoma progression by reversion to a melanocytic phenotype. J Biol Chem 287(34):29184–29193. doi:10.1074/jbc.M112.377176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Picardo M, Mastrofrancesco A, Biro T (2015) Sebaceous gland—a major player in skin homeostasis. Exp Dermatol. doi:10.1111/exd.12720

    Google Scholar 

  53. Kurokawa I, Danby FW, Ju Q, Wang X, Xiang LF, Xia L, Chen W, Nagy I, Picardo M, Suh DH, Ganceviciene R, Schagen S, Tsatsou F, Zouboulis CC (2009) New developments in our understanding of acne pathogenesis and treatment. Exp Dermatol 18(10):821–832. doi:10.1111/j.1600-0625.2009.00890.x

    Article  CAS  PubMed  Google Scholar 

  54. Bosen F, Schutz M, Beinhauer A, Strenzke N, Franz T, Willecke K (2014) The Clouston syndrome mutation connexin30 A88V leads to hyperproliferation of sebaceous glands and hearing impairments in mice. FEBS Lett 588(9):1795–1801. doi:10.1016/j.febslet.2014.03.040

    Article  CAS  PubMed  Google Scholar 

  55. Lu C, Fuchs E (2014) Sweat gland progenitors in development, homeostasis, and wound repair. Cold Spring Harb Perspect Med. doi:10.1101/cshperspect.a015222

    Google Scholar 

  56. de Andrade AC, Vieira DC, Harris OM, Pithon MM (2014) Clouston syndrome associated with eccrine syringofibroadenoma. An Bras Dermatol 89(3):504–506

    Article  PubMed Central  PubMed  Google Scholar 

  57. de Zwart-Storm EA, Hamm H, Stoevesandt J, Steijlen PM, Martin PE, van Geel M, van Steensel MA (2008) A novel missense mutation in GJB2 disturbs gap junction protein transport and causes focal palmoplantar keratoderma with deafness. J Med Genet 45(3):161–166. doi:10.1136/jmg.2007.052332

    Article  PubMed  Google Scholar 

  58. Criscione V, Lachiewicz A, Robinson-Bostom L, Grenier N, Dill SW (2010) Porokeratotic eccrine duct and hair follicle nevus (PEHFN) associated with keratitis-ichthyosis-deafness (KID) syndrome. Pediatr Dermatol 27(5):514–517. doi:10.1111/j.1525-1470.2010.01272.x

    Article  PubMed  Google Scholar 

  59. Iguchi M, Hara M, Manome H, Kobayasi H, Tagami H, Aiba S (2003) Communication network in the follicular papilla and connective tissue sheath through gap junctions in human hair follicles. Exp Dermatol 12(3):283–288

    Article  PubMed  Google Scholar 

  60. Arita K, Akiyama M, Tsuji Y, McMillan JR, Eady RA, Shimizu H (2004) Gap junction development in the human fetal hair follicle and bulge region. Br J Dermatol 150(3):429–434. doi:10.1046/j.1365-2133.2004.05775.x

    Article  CAS  PubMed  Google Scholar 

  61. Kloepper JE, Tiede S, Brinckmann J, Reinhardt DP, Meyer W, Faessler R, Paus R (2008) Immunophenotyping of the human bulge region: the quest to define useful in situ markers for human epithelial hair follicle stem cells and their niche. Exp Dermatol 17(7):592–609. doi:10.1111/j.1600-0625.2008.00720.x

    Article  PubMed  Google Scholar 

  62. Choudhry R, Pitts JD, Hodgins MB (1997) Changing patterns of gap junctional intercellular communication and connexin distribution in mouse epidermis and hair follicles during embryonic development. Dev Dyn 210(4):417–430

    Article  CAS  PubMed  Google Scholar 

  63. Risek B, Klier FG, Gilula NB (1992) Multiple gap junction genes are utilized during rat skin and hair development. Development 116(3):639–651

    CAS  PubMed  Google Scholar 

  64. Soma T, Fujiwara S, Shirakata Y, Hashimoto K, Kishimoto J (2012) Hair-inducing ability of human dermal papilla cells cultured under Wnt/beta-catenin signalling activation. Exp Dermatol 21(4):307–309. doi:10.1111/j.1600-0625.2012.01458.x

    Article  CAS  PubMed  Google Scholar 

  65. Essenfelder GM, Bruzzone R, Lamartine J, Charollais A, Blanchet-Bardon C, Barbe MT, Meda P, Waksman G (2004) Connexin30 mutations responsible for hidrotic ectodermal dysplasia cause abnormal hemichannel activity. Hum Mol Genet 13(16):1703–1714. doi:10.1093/hmg/ddh191

    Article  CAS  PubMed  Google Scholar 

  66. Kam E, Hodgins MB (1992) Communication compartments in hair follicles and their implication in differentiative control. Development 114(2):389–393

    CAS  PubMed  Google Scholar 

  67. Laird DW (2014) Syndromic and non-syndromic disease-linked Cx43 mutations. FEBS Lett 588(8):1339–1348. doi:10.1016/j.febslet.2013.12.022

    Article  CAS  PubMed  Google Scholar 

  68. Gabriel H, Kupsch P, Sudendey J, Winterhager E, Jahnke K, Lautermann J (2001) Mutations in the connexin26/GJB2 gene are the most common event in non-syndromic hearing loss among the German population. Human Mutat 17(6):521–522. doi:10.1002/humu.1138

    Article  CAS  Google Scholar 

  69. Common JE, Di WL, Davies D, Kelsell DP (2004) Further evidence for heterozygote advantage of GJB2 deafness mutations: a link with cell survival. J Med Genet 41(7):573–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Man YK, Trolove C, Tattersall D, Thomas AC, Papakonstantinopoulou A, Patel D, Scott C, Chong J, Jagger DJ, O’Toole EA, Navsaria H, Curtis MA, Kelsell DP (2007) A deafness-associated mutant human connexin 26 improves the epithelial barrier in vitro. J Membr Biol 218(1–3):29–37. doi:10.1007/s00232-007-9025-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Vuckovic D, Dallapiccola B, Franze A, Mauri L, Perrone MD, Gasparini P (2014) Connexin 26 variant carriers have a better gastrointestinal health: is this the heterozygote advantage?. EJHG, Eur J Hum Genet. doi:10.1038/ejhg.2014.151

    Google Scholar 

  72. Volo T, Sathiyaseelan T, Astolfi L, Guaran V, Trevisi P, Emanuelli E, Martini A (2013) Hair phenotype in non-syndromic deafness. Int J Pediatr Otorhinolaryngol 77(8):1280–1285. doi:10.1016/j.ijporl.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  73. Raeve L, Bonduelle M, Roseeuw D, Stene J (2008) Trichothiodystrofy-like hair abnormalities in a child with Keratitis Hychtyosis Deafness Syndrome. Pediatr Dermatol 25:2466–2469

    Article  Google Scholar 

  74. Sanchez HA, Verselis VK (2014) Aberrant Cx26 hemichannels and keratitis-ichthyosis-deafness syndrome: insights into syndromic hearing loss. Front Cell Neurosci 8:354. doi:10.3389/fncel.2014.00354

    Article  PubMed Central  PubMed  Google Scholar 

  75. van Steensel MA, Steijlen PM, Bladergroen RS, Hoefsloot EH, van Ravenswaaij-Arts CM, van Geel M (2004) A phenotype resembling the Clouston syndrome with deafness is associated with a novel missense GJB2 mutation. J Invest Dermatol 123(2):291–293. doi:10.1111/j.0022-202X.2004.23204.x

    Article  PubMed  Google Scholar 

  76. Smith FJ, Morley SM, McLean WH (2002) A novel connexin 30 mutation in Clouston syndrome. J Invest Dermatol 118(3):530–532. doi:10.1046/j.0022-202x.2001.01689.x

    Article  CAS  PubMed  Google Scholar 

  77. Berger AC, Kelly JJ, Lajoie P, Shao Q, Laird DW (2014) Mutations in Cx30 that are linked to skin disease and non-syndromic hearing loss exhibit several distinct cellular pathologies. J Cell Sci 127(Pt 8):1751–1764. doi:10.1242/jcs.138230

    Article  CAS  PubMed  Google Scholar 

  78. Fujimoto A, Kurban M, Nakamura M, Farooq M, Fujikawa H, Kibbi AG, Ito M, Dahdah M, Matta M, Diab H, Shimomura Y (2013) GJB6, of which mutations underlie Clouston syndrome, is a potential direct target gene of p63. J Dermatol Sci 69(2):159–166. doi:10.1016/j.jdermsci.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  79. van Steensel MA, Jonkman MF, van Geel M, Steijlen PM, McLean WH, Smith FJ (2003) Clouston syndrome can mimic pachyonychia congenita. J Invest Dermatol 121(5):1035–1038. doi:10.1046/j.1523-1747.2003.12527.x

    Article  PubMed  Google Scholar 

  80. Alibardi L (2010) Gap and tight junctions in the formation of feather branches: a descriptive ultrastructural study. An Anat 192(4):251–258. doi:10.1016/j.aanat.2010.06.003

    Article  CAS  Google Scholar 

  81. Cruciani V, Mikalsen SO (2006) The vertebrate connexin family. Cell Mol Life Sci 63(10):1125–1140. doi:10.1007/s00018-005-5571-8

    Article  CAS  PubMed  Google Scholar 

  82. Meyer W, Oberthuer A, Ngezahayo A, Neumann U, Jacob R (2014) Immunohistochemical demonstration of connexins in the developing feather follicle of the chicken. Acta Histochem 116(4):639–645. doi:10.1016/j.acthis.2013.11.016

    Article  CAS  PubMed  Google Scholar 

  83. Kwon TJ, Kim DB, Bae JW, Sagong B, Choi SY, Cho HJ, Kim UK, Lee KY (2014) Molecular cloning, characterization, and expression of pannexin genes in chicken. Poult Sci 93(9):2253–2261. doi:10.3382/ps.2013-03867

    Article  CAS  PubMed  Google Scholar 

  84. Raghupathy RK, McCulloch DL, Akhtar S, Al-mubrad TM, Shu X (2013) Zebrafish model for the genetic basis of X-linked retinitis pigmentosa. Zebrafish 10(1):62–69. doi:10.1089/zeb.2012.0761

    Article  CAS  PubMed  Google Scholar 

  85. Chang-Chien J, Yen YC, Chien KH, Li SY, Hsu TC, Yang JJ (2014) The connexin 30.3 of zebrafish homologue of human connexin 26 may play similar role in the inner ear. Hearing Res 313:55–66. doi:10.1016/j.heares.2014.04.010

    Article  CAS  Google Scholar 

  86. Li Q, Uitto J (2013) Zebrafish as a model system to study heritable skin diseases. Methods Mol Biol 961:411–424. doi:10.1007/978-1-62703-227-8_28

    Article  CAS  PubMed  Google Scholar 

  87. Li Q, Uitto J (2014) Zebrafish as a model system to study skin biology and pathology. J Invest Dermatol 134(6):e21. doi:10.1038/jid.2014.182

    Article  CAS  PubMed  Google Scholar 

  88. Tao L, DeRosa AM, White TW, Valdimarsson G (2010) Zebrafish cx30.3: identification and characterization of a gap junction gene highly expressed in the skin. Dev Dyn 239(10):2627–2636. doi:10.1002/dvdy.22399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Hoptak-Solga AD, Klein KA, DeRosa AM, White TW, Iovine MK (2007) Zebrafish short fin mutations in connexin43 lead to aberrant gap junctional intercellular communication. FEBS Lett 581(17):3297–3302. doi:10.1016/j.febslet.2007.06.030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Richardson R, Slanchev K, Kraus C et al (2013) Adult zebrafish as a model system for cutaneous wound-healing research. J Invest Dermatol 133:1655–1665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Hoptak-Solga AD, Nielsen S, Jain I, Thummel R, Hyde DR, Iovine MK (2008) Connexin43 (GJA1) is required in the population of dividing cells during fin regeneration. Dev Biol 317(2):541–548. doi:10.1016/j.ydbio.2008.02.051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Kondo S, Miura T (2010) Reaction-diffusion model as a framework for understanding biological pattern formation. Science (New York, NY) 329(5999):1616–1620. doi:10.1126/science.1179047

    Article  CAS  Google Scholar 

  93. Frohnhofer HG, Krauss J, Maischein HM, Nüsslein-Volhard C (2013) Iridophores and their interactions with other chromatophores are required for stripe formation in zebrafish. Development 140:2997–3007

    Article  PubMed Central  PubMed  Google Scholar 

  94. Watanabe M, Iwashita M, Ishii M, Kurachi Y, Kawakami A, Kondo S, Okada N (2006) Spot pattern of leopard Danio is caused by mutation in the zebrafish connexin41.8 gene. EMBO Rep 7(9):893–897. doi:10.1038/sj.embor.7400757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Watanabe M, Kondo S (2012) Changing clothes easily: connexin41.8 regulates skin pattern variation. Pigment Cell Melanoma Res 25(3):326–330. doi:10.1111/j.1755-148X.2012.00984.x

    Article  CAS  PubMed  Google Scholar 

  96. Watanabe M, Watanabe D, Kondo S (2012) Polyamine sensitivity of gap junctions is required for skin pattern formation in zebrafish. Sci Rep 2:473. doi:10.1038/srep00473

    PubMed Central  PubMed  Google Scholar 

  97. Irion U, Frohnhofer HG, Krauss J, Colak Champollion T, Maischein HM, Geiger-Rudolph S, Weiler C, Nusslein-Volhard C (2014) Gap junctions composed of connexins 41.8 and 39.4 are essential for colour pattern formation in zebrafish. eLife 3:e05125. doi:10.7554/eLife.05125

Download references

Acknowledgments

Chrysovalantou Faniku is currently supported by a Glasgow Caledonian University studentship. We thank Professor Malcolm Hodgins for discussion and proofreading the manuscript.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia E. Martin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faniku, C., Wright, C.S. & Martin, P.E. Connexins and pannexins in the integumentary system: the skin and appendages. Cell. Mol. Life Sci. 72, 2937–2947 (2015). https://doi.org/10.1007/s00018-015-1969-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1969-0

Keywords

Navigation