Skip to main content
Log in

Direct visualization of vaults within intact cells by electron cryo-tomography

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The vault complex is the largest cellular ribonucleoprotein complex ever characterized and is present across diverse Eukarya. Despite significant information regarding the structure, composition and evolutionary conservation of the vault, little is know about the complex’s actual biological function. To determine if intracellular vaults are morphologically similar to previously studied purified and recombinant vaults, we have used electron cryo-tomography to characterize the vault complexes found in the thin edges of primary human cells growing in tissue culture. Our studies confirm that intracellular vaults are similar in overall size and shape to purified and recombinant vaults previously analyzed. Results from subtomogram averaging indicate that densities within the vault lumen are not ordered, but randomly distributed. We also observe that vaults located in the extreme periphery of the cytoplasm predominately associate with granule-like structures and actin. Our ultrastructure studies augment existing biochemical, structural and genetic information on the vault, and provide important intracellular context for the ongoing efforts to understand the biological function of the native cytoplasmic vault.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mikyas Y, Makabi M, Raval-Fernandes S, Harrington L, Kickhoefer VA, Rome LH, Stewart PL (2004) Cryoelectron microscopy imaging of recombinant and tissue derived vaults: localization of the MVP N termini and VPARP. J Mol Biol 344(1):91–105. doi:10.1016/j.jmb.2004.09.021

    Article  CAS  PubMed  Google Scholar 

  2. Kedersha NL, Heuser JE, Chugani DC, Rome LH (1991) Vaults. III. Vault ribonucleoprotein particles open into flower-like structures with octagonal symmetry. J Cell Biol 112(2):225–235

    Article  CAS  PubMed  Google Scholar 

  3. Kedersha NL, Rome LH (1986) Isolation and characterization of a novel ribonucleoprotein particle: large structures contain a single species of small RNA. J Cell Biol 103(3):699–709

    Article  CAS  PubMed  Google Scholar 

  4. Kickhoefer VA, Vasu SK, Rome LH (1996) Vaults are the answer, what is the question? Trends Cell Biol 6(5):174–178

    Article  CAS  PubMed  Google Scholar 

  5. Kedersha NL, Miquel MC, Bittner D, Rome LH (1990) Vaults. II. Ribonucleoprotein structures are highly conserved among higher and lower eukaryotes. J Cell Biol 110(4):895–901

    Article  CAS  PubMed  Google Scholar 

  6. Stephen AG, Raval-Fernandes S, Huynh T, Torres M, Kickhoefer VA, Rome LH (2001) Assembly of vault-like particles in insect cells expressing only the major vault protein. J Biol Chem 276(26):23217–23220. doi:10.1074/jbc.C100226200

    Article  CAS  PubMed  Google Scholar 

  7. Anderson DH, Kickhoefer VA, Sievers SA, Rome LH, Eisenberg D (2007) Draft crystal structure of the vault shell at 9-A resolution. PLoS Biol 5(11):e318. doi:10.1371/journal.pbio.0050318

    Article  PubMed Central  PubMed  Google Scholar 

  8. Casanas A, Querol-Audi J, Guerra P, Pous J, Tanaka H, Tsukihara T, Verdaguer N, Fita I (2013) New features of vault architecture and dynamics revealed by novel refinement using the deformable elastic network approach. Acta Crystallogr D Biol Crystallogr 69(Pt 6):1054–1061. doi:10.1107/S0907444913004472

    Article  CAS  PubMed  Google Scholar 

  9. Tanaka H, Kato K, Yamashita E, Sumizawa T, Zhou Y, Yao M, Iwasaki K, Yoshimura M, Tsukihara T (2009) The structure of rat liver vault at 3.5 angstrom resolution. Science (New York, NY) 323(5912):384–388. doi:10.1126/science.1164975

    Article  CAS  Google Scholar 

  10. Kong LB, Siva AC, Kickhoefer VA, Rome LH, Stewart PL (2000) RNA location and modeling of a WD40 repeat domain within the vault. RNA (New York, NY) 6(6):890–900

    Article  CAS  Google Scholar 

  11. Kickhoefer VA, Rajavel KS, Scheffer GL, Dalton WS, Scheper RJ, Rome LH (1998) Vaults are up-regulated in multidrug-resistant cancer cell lines. J Biol Chem 273(15):8971–8974

    Article  CAS  PubMed  Google Scholar 

  12. Berger W, Steiner E, Grusch M, Elbling L, Micksche M (2008) Vaults and the major vault protein: novel roles in signal pathway regulation and immunity. Cell Mol Life Sci CMLS 66(1):43–61. doi:10.1007/s00018-008-8364-z

    Article  Google Scholar 

  13. Mossink MH, van Zon A, Fränzel-Luiten E, Schoester M, Kickhoefer VA, Scheffer GL, Scheper RJ, Sonneveld P, Wiemer EAC (2002) Disruption of the murine major vault protein (MVP/LRP) gene does not induce hypersensitivity to cytostatics. Cancer Res 62(24):7298–7304

    CAS  PubMed  Google Scholar 

  14. Dortet L, Mostowy S, Samba-Louaka A, Louaka AS, Gouin E, Nahori M-A, Wiemer EAC, Dussurget O, Cossart P (2011) Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy. PLoS Pathog 7(8):e1002168. doi:10.1371/journal.ppat.1002168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Mrazek J, Kreutmayer SB, Grasser FA, Polacek N, Huttenhofer A (2007) Subtractive hybridization identifies novel differentially expressed ncRNA species in EBV-infected human B cells. Nucleic Acids Res 35(10):e73. doi:10.1093/nar/gkm244

    Article  PubMed Central  PubMed  Google Scholar 

  16. Liu S, Hao Q, Peng N, Yue X, Wang Y, Chen Y, Wu J, Zhu Y (2012) Major vault protein: a virus-induced host factor against viral replication through the induction of type-I interferon. Hepatology 56(1):57–66. doi:10.1002/hep.25642

    Article  CAS  PubMed  Google Scholar 

  17. Daugherty MD, Young JM, Kerns JA, Malik HS (2014) Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts. PLoS Genet 10(5):e1004403. doi:10.1371/journal.pgen.1004403.s018

    Article  PubMed Central  PubMed  Google Scholar 

  18. Tanaka H, Tsukihara T (2012) Structural studies of large nucleoprotein particles, vaults. Proc Jpn Acad Ser B Phys Biol Sci 88(8):416–433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Eichenmüller B, Kedersha N, Solovyeva E, Everley P, Lang J, Himes RH, Suprenant KA (2003) Vaults bind directly to microtubules via their caps and not their barrels. Cell Motil Cytoskelet 56(4):225–236

    Article  Google Scholar 

  20. Ando D, Mattson MK, Xu J, Gopinathan A (2014) Cooperative protofilament switching emerges from inter-motor interference in multiple-motor transport. Sci Rep 4:7255. doi:10.1038/srep07255

    Article  PubMed Central  PubMed  Google Scholar 

  21. Nicastro D, Schwartz C, Pierson J, Gaudette R, Porter ME, McIntosh JR (2006) The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313(5789):944–948. doi:10.1126/science.1128618

    Article  CAS  PubMed  Google Scholar 

  22. Gan L, Jensen GJ (2012) Electron tomography of cells. Q Rev Biophys 45(1):27–56. doi:10.1017/S0033583511000102

    Article  CAS  PubMed  Google Scholar 

  23. Kong LB, Siva AC, Rome LH, Stewart PL (1999) Structure of the vault, a ubiquitous cellular component. Structure 7(4):371–379

    Article  CAS  PubMed  Google Scholar 

  24. Pilhofer M, Ladinsky MS, McDowall AW, Petroni G, Jensen GJ (2011) Microtubules in bacteria: ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton. PLoS Biol 9(12):e1001213. doi:10.1371/journal.pbio.1001213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kickhoefer VA, Liu Y, Kong LB, Snow BE, Stewart PL, Harrington L, Rome LH (2001) The Telomerase/vault-associated protein TEP1 is required for vault RNA stability and its association with the vault particle. J Cell Biol 152(1):157–164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Querol-Audi J, Casanas A, Uson I, Luque D, Caston JR, Fita I, Verdaguer N (2009) The mechanism of vault opening from the high resolution structure of the N-terminal repeats of MVP. EMBO J 28(21):3450–3457. doi:10.1038/emboj.2009.274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Yang J, Kickhoefer VA, Ng BC, Gopal A, Bentolila LA, John S, Tolbert SH, Rome LH (2010) Vaults are dynamically unconstrained cytoplasmic nanoparticles capable of half vault exchange. ACS Nano 4(12):7229–7240. doi:10.1021/nn102051r

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kickhoefer VA, Siva AC, Kedersha NL, Inman EM, Ruland C, Streuli M, Rome LH (1999) The 193-kD vault protein, VPARP, is a novel poly(ADP-ribose) polymerase. J Cell Biol 146(5):917–928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Vasu SK, Rome LH (1995) Dictyostelium vaults: disruption of the major proteins reveals growth and morphological defects and uncovers a new associated protein. J Biol Chem 270(28):16588–16594

    Article  CAS  PubMed  Google Scholar 

  30. Mrazek J, Toso D, Ryazantsev S, Zhang X, Zhou ZH, Fernandez BC, Kickhoefer VA, Rome LH (2014) Polyribosomes are molecular 3D nanoprinters that orchestrate the assembly of vault particles. ACS Nano. doi:10.1021/nn504778h

    PubMed Central  PubMed  Google Scholar 

  31. Weber SC, Brangwynne CP (2012) Getting RNA and protein in phase. Cell 149 (6):1188–1191. doi:10.1016/j.cell.2012.05.022

    Article  CAS  PubMed  Google Scholar 

  32. Hyman AA, Brangwynne CP (2011) Beyond stereospecificity: liquids and mesoscale organization of cytoplasm. Dev Cell 21(1):14–16. doi:10.1016/j.devcel.2011.06.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Zhiheng Yu and M. Jason de la Cruz of the Howard Hughes Medical Institute CryoEM Shared Resource at Janelia Farm for assistance with data collection. This work was supported by NIH Grant 2P50GM082545 (to GJJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant J. Jensen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MOV 2069 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woodward, C.L., Mendonça, L.M. & Jensen, G.J. Direct visualization of vaults within intact cells by electron cryo-tomography. Cell. Mol. Life Sci. 72, 3401–3409 (2015). https://doi.org/10.1007/s00018-015-1898-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1898-y

Keywords

Navigation