Skip to main content

Advertisement

Log in

Intracellular EP2 prostanoid receptor promotes cancer-related phenotypes in PC3 cells

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Prostaglandin E2 (PGE2) and hypoxia-inducible factor-1α (HIF-1α) affect many mechanisms that have been involved in the pathogenesis of prostate cancer (PC). HIF-1α, which is up-regulated by PGE2 in LNCaP cells and PC3 cells, has been shown to contribute to metastasis and chemo-resistance of castrate-resistant PC (a lethal form of PC) and to promote in PC cells migration, invasion, angiogenesis and chemoresistance. The selective blockade of PGE2-EP2 signaling pathway in PC3 cells results in inhibition of cancer cell proliferation and invasion. PGE2 affects many mechanisms that have been shown to play a role in carcinogenesis such as proliferation, apoptosis, migration, invasion and angiogenesis. Recently, we have found in PC3 cells that most of these PGE2-induced cancer-related features are due to intracellular PGE2 (iPGE2). Here, we aimed to study in PC3 cells the role of iPGE2-intracellular EP2 (iEP2)-HIF-1α signaling in several events linked to PC progression using an experimental approach involving pharmacological inhibition of the prostaglandin uptake transporter and EGFR and pharmacological and genetic modulation of EP2 receptor and HIF-1α. We found that iPGE2 increases HIF-1α expression through iEP2-dependent EGFR transactivation and that inhibition of any of the axis iEP2-EGFR-HIF-1α in cells treated with PGE2 or EP2 agonist results in prevention of the increase in PC3 cell proliferation, adhesion, migration, invasion and angiogenesis in vitro. Of note, PGE2 induced EP2 antagonist-sensitive DNA synthesis in nuclei isolated from PC3 cells, which indicates that they have functional EP2 receptors. These results suggest that PGE2-EP2 dependent intracrine mechanisms involving EGFR and HIF-1α play a role in PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BG:

Bromocresol green

EGFR:

Epidermal growth factor receptor

HIF-1α:

Hypoxia-inducible factor-1α

PGE2 :

Prostaglandin E2

PGT:

Prostaglandin transporter

VEGF-A:

Vascular endothelial growth factor-A

HRE:

HIF-responsive element

PC:

Prostate cancer

References

  1. Badawi AF (2000) The role of prostaglandin synthesis in prostate cancer. BJU Int 85:451–462

    Article  CAS  PubMed  Google Scholar 

  2. Wang D, Dubois RN (2010) Eicosanoids and cancer. Nat Rev Cancer 10:181–193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, Kaidi A (2009) The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30:377–386

    Article  CAS  PubMed  Google Scholar 

  4. Jiang J, Dingledine R (2013) Role of prostaglandin receptor EP2 in the regulations of cancer cell proliferation, invasion, and inflammation. J Pharmacol Exp Ther 344:360–367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Jain S, Chakraborty G, Raja R, Kale S, Kundu GC (2008) Prostaglandin E2 regulates tumor angiogenesis in prostate cancer. Cancer Res 68:7750–7759

    Article  CAS  PubMed  Google Scholar 

  6. Vo BT, Morton D, Komaragiri S, Millena AC, Leath C, Khan SA (2013) TGF-β effects on prostate cancer cell migration and invasion are mediated by PGE2 through activation of PI3K/AKT/mTOR pathway. Endocrinology 154:1768–1779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Hussain T, Gupta S, Mukhtar H (2003) Cyclooxygenase-2 and prostate carcinogenesis. Cancer Lett 191:125–135

    Article  CAS  PubMed  Google Scholar 

  8. Fernández-Martínez AB, Bajo AM, Valdehita A, Isabel Arenas M, Sánchez-Chapado M, Carmena MJ, Prieto JC (2009) Multifunctional role of VIP in prostate cancer progression in a xenograft model: suppression by curcumin and COX-2 inhibitor NS-398. Peptides 30:2357–2364

    Article  PubMed  Google Scholar 

  9. Dai Y, Bae K, Siemann DW (2011) Impact of hypoxia on the metastatic potential of human prostate cancer cells. Int J Radiat Oncol Biol Phys 81:521–528

    Article  PubMed Central  PubMed  Google Scholar 

  10. Ranasinghe WK, Xiao L, Kovac S, Chang M, Michiels C, Bolton D, Shulkes A, Baldwin GS, Patel O (2013) The role of hypoxia-inducible factor 1α in determining the properties of castrate-resistant prostate cancers. PLoS One 8:e54251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Liu XH, Kirschenbaum A, Lu M, Yao S, Klausner A, Preston C, Holland JF, Levine AC (2002) Prostaglandin E(2) stimulates prostatic intraepithelial neoplasia cell growth through activation of the interleukin-6/GP130/STAT-3 signaling pathway. Biochem Biophys Res Commun 290:249–255

    Article  CAS  PubMed  Google Scholar 

  12. Fernández-Martínez AB, Jiménez MI, Manzano VM, Lucio-Cazaña FJ (2012) Intracrine prostaglandin E(2) signalling regulates hypoxia-inducible factor-1α expression through retinoic acid receptor-β. Int J Biochem Cell Biol 44:2185–2193

    Article  PubMed  Google Scholar 

  13. Palayoor ST, Tofilon PJ, Coleman CN (2003) Ibuprofen-mediated reduction of hypoxia-inducible factors HIF-1alpha and HIF-2alpha in prostate cancer cells. Clin Cancer Res 9:3150–3157

    CAS  PubMed  Google Scholar 

  14. Fernández-Martínez AB, Jiménez MI, Hernández IS, García-Bermejo ML, Manzano VM, Fraile EA, de Lucio-Cazaña FJ (2011) Mutual regulation of hypoxic and retinoic acid related signalling in tubular proximal cells. Int J Biochem Cell Biol 43:1198–1207

    Article  PubMed  Google Scholar 

  15. Huang HF, Shu P, Murphy TF, Aisner S, Fitzhugh VA, Jordan ML (2013) Significance of divergent expression of prostaglandin EP4 and EP3 receptors in human prostate cancer. Mol Cancer Res 11:427–439

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Klein RD (2007) Prostaglandin E2 induces vascular endothelial growth factor secretion in prostate cancer cells through EP2 receptor-mediated cAMP pathway. Mol Carcinog 46:912–923

    Article  CAS  PubMed  Google Scholar 

  17. Madrigal A, Lucio Cazaña FJ, Fernández-Martínez AB (2015) Intracellular Prostaglandin E2 strengthens cancer-related phenotypes in PC3 cells. Int J Biochem Cell Biol 59:52–61

    Article  Google Scholar 

  18. Legler DF, Bruckner M, Uetz-von Allmen E, Krause P (2010) Prostaglandin E2 at new glance: novel insights in functional diversity offer therapeutic chances. Int J Biochem Cell Biol 42:198–201

    Article  CAS  PubMed  Google Scholar 

  19. Schuster VL (2002) Prostaglandin transport. Prostaglandins Other Lipid Mediat 68–69:633–647

    Article  PubMed  Google Scholar 

  20. Kanai N, Lu R, Satriano JA, Bao Y, Wolkoff AW, Schuster VL (1995) Identification and characterization of a prostaglandin transporter. Science 268:866–869

    Article  CAS  PubMed  Google Scholar 

  21. Lu R, Kanai N, Bao Y, Schuster VL (1996) Cloning, in vitro expression, and tissue distribution of a human prostaglandin transporter cDNA(hPGT). J Clin Invest 98:1142–1149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Bao Y, Pucci ML, Chan BS, Lu R, Ito S, Schuster VL (2002) Prostaglandin transporter PGT is expressed in cell types that synthesize and release prostanoids. Am J Physiol Renal Physiol 282:F1103–F1110

    Article  CAS  PubMed  Google Scholar 

  23. Nomura T, Lu R, Pucci ML, Schuster VL (2004) The two-step model of prostaglandin signal termination: in vitro reconstitution with the prostaglandin transporter and prostaglandin 15 dehydrogenase. Mol Pharmacol 65:973–978

    Article  CAS  PubMed  Google Scholar 

  24. Bhattacharya M, Peri KG, Almazan G, Ribeiro-da-Silva A, Shichi H, Durocher Y, Abramovitz M, Hou X, Varma DR, Chemtob S (1998) Nuclear localization of prostaglandin E2 receptors. Proc Natl Acad Sci USA 95:15792–15797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Bhattacharya M, Peri K, Ribeiro-da-Silva A, Almazan G, Shichi H, Hou X, Varma DR, Chemtob S (1999) Localization of functional prostaglandin E2 receptors EP3 and EP4 in the nuclear envelope. J Biol Chem 274:15719–15724

    Article  CAS  PubMed  Google Scholar 

  26. Lalier L, Cartron PF, Olivier C, Logé C, Bougras G, Robert JM, Oliver L, Vallette FM (2011) Prostaglandins antagonistically control Bax activation during apoptosis. Cell Death Differ 18:528–537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Lalier L, Pedelaborde F, Braud C, Menanteau J, Vallette FM, Olivier C (2011) Increase in intracellular PGE2 induces apoptosis in Bax-expressing colon cancer cell. BMC Cancer 11:153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Gobeil F, Dumont I, Marrache AM, Vazquez-Tello A, Bernier SG, Abran D, Hou X, Beauchamp MH, Quiniou C, Bouayad A, Choufani S, Bhattacharya M, Molotchnikoff S, Ribeiro-Da-Silva A, Varma DR, Bkaily G, Chemtob S (2002) Regulation of eNOS expression in brain endothelial cells by perinuclear EP(3) receptors. Circ Res 90:682–689

    Article  CAS  PubMed  Google Scholar 

  29. Zhu T, Gobeil F, Vazquez-Tello A, Leduc M, Rihakova L, Bossolasco M, Bkaily G, Peri K, Varma DR, Orvoine R, Chemtob S (2006) Intracrine signaling through lipid mediators and their cognate nuclear G-protein-coupled receptors: a paradigm based on PGE2, PAF, and LPA1 receptors. Can J Physiol Pharmacol 84:377–391

    Article  CAS  PubMed  Google Scholar 

  30. Fernández-Martínez AB, Lucio Cazaña FJ (1833) Epidermal growth factor receptor transactivation by intracellular prostaglandin E2-activated prostaglandin E2 receptors. Role in retinoic acid receptor-β up-regulation. Biochim Biophys Acta 2013:2029–2038

    Google Scholar 

  31. Fernández-Martínez AB, Lucio Cazaña FJ (1843) Prostaglandin E2 induces retinoic acid receptor-β up-regulation through MSK1. Biochim Biophys Acta 2014:1997–2004

    Google Scholar 

  32. Lalier L, Cartron PF, Pedelaborde F, Olivier C, Loussouarn D, Martin SA, Meflah K, Menanteau J, Vallette FM (2007) Increase in PGE2 biosynthesis induces a Bax dependent apoptosis correlated to patients’ survival in glioblastoma multiforme. Oncogene 26:4999–5009

    Article  CAS  PubMed  Google Scholar 

  33. Rasmuson A, Kock A, Fuskevåg OM, et al (2012) Autocrine prostaglandin E2 signaling promotes tumor cell survival and proliferation in childhood neuroblastoma. Castresana JS. PLoS One 7:e29331

  34. Miyata Y, Kanda S, Maruta S, Matsuo T, Sakai H, Hayashi T, Kanetake H (2006) Relationship between prostaglandin E2 receptors and clinicopathologic features in human prostate cancer tissue. Urology 68:1360–1365

    Article  PubMed  Google Scholar 

  35. Aragonés J, Jones DR, Martin S, San Juan MA, Alfranca A, Vidal F, Vara A, Mérida I, Landázuri MO (2001) Evidence for the involvement of diacylglycerol kinase in the activation of hypoxia-inducible transcription factor 1 by low oxygen tension. J Biol Chem 276:10548–10555

    Article  PubMed  Google Scholar 

  36. Krude T, Jackman M, Pines J, Laskey RA (1997) Cyclin/Cdk dependent initiation of DNA replication in a human cell-free system. Cell 88:109–119

    Article  CAS  PubMed  Google Scholar 

  37. Montesano R, Orci L, Vassalli P (1983) In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J Cell Biol 97:1648–1652

    Article  CAS  PubMed  Google Scholar 

  38. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML (2002) Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295:858–861

    Article  CAS  PubMed  Google Scholar 

  40. Ellem SJ, Risbridger GP (2007) Treating prostate cancer: a rationale for targeting local oestrogens. Nat Rev Cancer 7:621–627

    Article  CAS  PubMed  Google Scholar 

  41. Palapattu GS, Sutcliffe S, Bastian PJ, Platz EA, De Marzo AM, Isaacs WB, Nelson WG (2005) Prostate carcinogenesis and inflammation: emerging insights. Carcinogenesis 26:1170–1181

    Article  CAS  PubMed  Google Scholar 

  42. De Marzo AM, DeWeese TL, Platz EA, Meeker AK, Nakayama M, Epstein JI, Isaacs WB, Nelson WG (2004) Pathological and molecular mechanisms of prostate carcinogenesis: implications for diagnosis, detection, prevention, and treatment. J Cell Biochem 91:459–477

    Article  PubMed  Google Scholar 

  43. Nelson WG, De Marzo AM, Isaacs WB (2003) Prostate cancer. N Engl J Med 349:366–381

    Article  CAS  PubMed  Google Scholar 

  44. Platz EA, De Marzo AM (2004) Epidemiology of inflammation and prostate cancer. J Urol 171:S36–S40

    Article  PubMed  Google Scholar 

  45. Lucia MS, Torkko KC (2004) Inflammation as a target for prostate cancer chemoprevention: pathological and laboratory rationale. J Urol 171:S30–S34 (discussion S35)

    Article  PubMed  Google Scholar 

  46. Holla VR, Backlund MG, Yang P, Newman RA, DuBois RN (2008) Regulation of prostaglandin transporters in colorectal neoplasia. Cancer Prev Res (Phila) 1:93–99

    Article  CAS  Google Scholar 

  47. Smartt HJ, Greenhough A, Ordóñez-Morán P, Al-Kharusi M, Collard TJ, Mariadason JM, Huelsken J, Williams AC, Paraskeva C (2012) β-catenin negatively regulates expression of the prostaglandin transporter PGT in the normal intestinal epithelium and colorectal tumour cells: a role in the chemopreventive efficacy of aspirin? Br J Cancer 107:1514–1517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Sugimoto Y, Narumiya S (2007) Prostaglandin E receptors. J Biol Chem 282:11613–11617

    Article  CAS  PubMed  Google Scholar 

  49. Fujino H, Regan JW (2003) Prostanoid receptors and phosphatidylinositol 3-kinase: a pathway to cancer? Trends Pharmacol Sci 24:335–340

    Article  CAS  PubMed  Google Scholar 

  50. Regan JW (2003) EP2 and EP4 prostanoid receptor signaling. Life Sci 74:143–153

    Article  CAS  PubMed  Google Scholar 

  51. Fernández-Martínez AB, Lucio Cazaña FJ (2014) Transactivation of EGFR by Prostaglandin E2 receptors: a nuclear story? CMLS. (In press)

  52. Liebmann C (2011) EGF receptor activation by GPCRs: an universal pathway reveals different versions. Mol Cell Endocrinol 331:222–231

    Article  CAS  PubMed  Google Scholar 

  53. Fischer OM, Hart S, Gschwind A, Ullrich A (2003) EGFR signal transactivation in cancer cells. Biochem Soc Trans 31:1203–1208

    Article  CAS  PubMed  Google Scholar 

  54. Wetzker R, Böhmer FD (2003) Transactivation joins multiple tracks to the ERK/MAPK cascade. Nat Rev Mol Cell Biol 4:651–657

    Article  CAS  PubMed  Google Scholar 

  55. Gschwind A, Zwick E, Prenzel N, Leserer M, Ullrich A (2001) Cell communication networks: epidermal growth factor receptor transactivation as the paradigm for interreceptor signal transmission. Oncogene 20:1594–1600

    Article  CAS  PubMed  Google Scholar 

  56. Helliwell RJ, Berry EB, O’Carroll SJ, Mitchell MD (2004) Nuclear prostaglandin receptors: role in pregnancy and parturition? Prostaglandins LeukotEssent Fatty Acids 70:149–165

    Article  CAS  Google Scholar 

  57. Han W, Lo HW (2012) Landscape of EGFR signaling network in human cancers: biology and therapeutic response in relation to receptor subcellular locations. Cancer Lett 318:124–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Kashiwagi E, Shiota M, Yokomizo A, Inokuchi J, Uchiumi T, Naito S (2014) EP2 signaling mediates suppressive effects of celecoxib on androgen receptor expression and cell proliferation in prostate cancer. Prostate Cancer Prostatic Dis 17:10–17

    Article  CAS  PubMed  Google Scholar 

  59. Jiang J, Dingledine R (2013) Prostaglandin receptor EP2 in the crosshairs of anti-inflammation, anti-cancer, and neuroprotection. Trends Pharmacol Sci 34:413–423

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Ono Pharmaceutical Co., Ltd. for kindly providing us with the EP agonists. This work was supported by Grant SAF2011-26838 from the Spanish Ministerio de Ciencia e Innovación. Ana Belén Fernández Martínez is the recipient of a postdoctoral fellowship from the Spanish Ministerio de Ciencia e Innovación.

Conflicts of interest

There are no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Belén Fernández-Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Martínez, A.B., Lucio-Cazaña, J. Intracellular EP2 prostanoid receptor promotes cancer-related phenotypes in PC3 cells. Cell. Mol. Life Sci. 72, 3355–3373 (2015). https://doi.org/10.1007/s00018-015-1891-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1891-5

Keywords

Navigation