Skip to main content

Advertisement

Log in

F-actin binding protein, anillin, regulates integrity of intercellular junctions in human epithelial cells

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Tight junctions (TJ) and adherens junctions (AJ) are key morphological features of differentiated epithelial cells that regulate the integrity and permeability of tissue barriers. Structure and remodeling of epithelial junctions depends on their association with the underlying actomyosin cytoskeleton. Anillin is a unique scaffolding protein interacting with different cytoskeletal components, including actin filaments and myosin motors. Its role in the regulation of mammalian epithelial junctions remains unexplored. Downregulation of anillin expression in human prostate, colonic, and lung epithelial cells triggered AJ and TJ disassembly without altering the expression of junctional proteins. This junctional disassembly was accompanied by dramatic disorganization of the perijunctional actomyosin belt; while the general architecture of the actin cytoskeleton, and activation status of non-muscle myosin II, remained unchanged. Furthermore, loss of anillin disrupted the adducin–spectrin membrane skeleton at the areas of cell–cell contact, selectively decreased γ-adducin expression, and induced cytoplasmic aggregation of αII-spectrin. Anillin knockdown activated c-Jun N-terminal kinase (JNK), and JNK inhibition restored AJ and TJ integrity and cytoskeletal organization in anillin-depleted cells. These findings suggest a novel role for anillin in regulating intercellular adhesion in model human epithelia by mechanisms involving the suppression of JNK activity and controlling the assembly of the perijunctional cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1:a002584

    Article  PubMed Central  PubMed  Google Scholar 

  2. Cheng CY, Mruk DD (2012) The blood-testis barrier and its implications for male contraception. Pharmacol Rev 64:16–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9:799–809

    Article  CAS  PubMed  Google Scholar 

  4. Green KJ, Getsios S, Troyanovsky S, Godsel L (2010) Intercellular junction assembly, dynamics, and homeostasis. Cold Spring Harb Perspect Biol 2:a000125

    Article  PubMed Central  PubMed  Google Scholar 

  5. Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2:285–293

    Article  CAS  PubMed  Google Scholar 

  6. Furuse M (2010) Molecular basis of the core structure of tight junctions. Cold Spring Harb Perspect Biol 2:a002907

    Article  PubMed Central  PubMed  Google Scholar 

  7. Furuse M, Izumi Y, Oda Y, Higashi T, Iwamoto N (2014) Molecular organization of tricellular tight junctions. Tissue barriers 2:e28960

    Article  PubMed Central  PubMed  Google Scholar 

  8. Meng W, Takeichi M (2009) Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol 1:a002899

    Article  PubMed Central  PubMed  Google Scholar 

  9. Troyanovsky S (2012) Adherens junction assembly. Subcell Biochem 60:89–108

    Article  CAS  PubMed  Google Scholar 

  10. Van Itallie CM, Anderson JM (2013) Claudin interactions in and out of the tight junction. Tissue barriers 1:e25247

    Article  PubMed Central  PubMed  Google Scholar 

  11. Han SP, Yap AS (2012) The cytoskeleton and classical cadherin adhesions. Subcell Biochem 60:111–135

    Article  CAS  PubMed  Google Scholar 

  12. Ivanov AI (2008) Actin motors that drive formation and disassembly of epithelial apical junctions. Front Biosci 13:6662–6681

    Article  CAS  PubMed  Google Scholar 

  13. Ivanov AI, Naydenov NG (2013) Dynamics and regulation of epithelial adherens junctions: recent discoveries and controversies. Int Rev Cell Mol Biol 303:27–99

    Article  CAS  PubMed  Google Scholar 

  14. Shen L, Weber CR, Raleigh DR, Yu D, Turner JR (2011) Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol 73:283–309

    Article  CAS  PubMed  Google Scholar 

  15. Troyanovsky SM (2008) Regulation of cadherin-based epithelial cell adhesion by endocytosis. Front Biosci Scholar Ed 1:61–67

    Article  Google Scholar 

  16. Hirokawa N, Heuser JE (1981) Quick-freeze, deep-etch visualization of the cytoskeleton beneath surface differentiations of intestinal epithelial cells. J Cell Biol 91:399–409

    Article  CAS  PubMed  Google Scholar 

  17. Hirokawa N, Tilney LG (1982) Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear. J Cell Biol 95:249–261

    Article  CAS  PubMed  Google Scholar 

  18. Madara JL (1987) Intestinal absorptive cell tight junctions are linked to cytoskeleton. Am J Physiol 253:C171–C175

    CAS  PubMed  Google Scholar 

  19. Ivanov AI, Parkos CA, Nusrat A (2010) Cytoskeletal regulation of epithelial barrier function during inflammation. Am J Pathol 177:512–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Yonemura S (2011) Cadherin–actin interactions at adherens junctions. Curr Opin Cell Biol 23:515–522

    Article  CAS  PubMed  Google Scholar 

  21. Takeichi M (2014) Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat Rev Mol Cell Biol 15:397–410

    Article  CAS  PubMed  Google Scholar 

  22. Dominguez R, Holmes KC (2011) Actin structure and function. Annu Rev Biophys 40:169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Dos Remedios C, Chhabra D, Kekic M, Dedova I, Tsubakihara M, Berry D, Nosworthy N (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83:433–473

    Article  PubMed  Google Scholar 

  24. Citalán-Madrid AF, García-Ponce A, Vargas-Robles H, Betanzos A, Schnoor M (2013) Small GTPases of the Ras superfamily regulate intestinal epithelial homeostasis and barrier function via common and unique mechanisms. Tissue barriers 1:e26938

    Article  PubMed Central  PubMed  Google Scholar 

  25. McCole DF (2013) Phosphatase regulation of intercellular junctions. Tissue barriers 1:e26713

    Article  PubMed Central  PubMed  Google Scholar 

  26. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10:778–790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. D’Avino PP (2009) How to scaffold the contractile ring for a safe cytokinesis–lessons from Anillin-related proteins. J Cell Sci 122:1071–1079

    Article  PubMed  Google Scholar 

  28. Hickson GR, O’Farrell PH (2008) Anillin: a pivotal organizer of the cytokinetic machinery. Biochem Soc Trans 36:439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Piekny AJ, Maddox AS (2010) The myriad roles of Anillin during cytokinesis. Semin Cell Dev Biol 21:881–891

    Article  CAS  PubMed  Google Scholar 

  30. Field CM, Alberts BM (1995) Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex. J Cell Biol 131:165–178

    Article  CAS  PubMed  Google Scholar 

  31. Kinoshita M, Field CM, Coughlin ML, Straight AF, Mitchison TJ (2002) Self-and actin-templated assembly of mammalian septins. Dev Cell 3:791–802

    Article  CAS  PubMed  Google Scholar 

  32. Field CM, Coughlin M, Doberstein S, Marty T, Sullivan W (2005) Characterization of anillin mutants reveals essential roles in septin localization and plasma membrane integrity. Development 132:2849–2860

    Article  CAS  PubMed  Google Scholar 

  33. Piekny AJ, Glotzer M (2008) Anillin is a scaffold protein that links RhoA, actin, and myosin during cytokinesis. Curr Biol 18:30–36

    Article  CAS  PubMed  Google Scholar 

  34. Straight AF, Field CM, Mitchison TJ (2005) Anillin binds nonmuscle myosin II and regulates the contractile ring. Mol Biol Cell 16:193–201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Suzuki C, Daigo Y, Ishikawa N, Kato T, Hayama S, Ito T, Tsuchiya E, Nakamura Y (2005) ANLN plays a critical role in human lung carcinogenesis through the activation of RHOA and by involvement in the phosphoinositide 3-kinase/AKT pathway. Cancer Res 65:11314–11325

    Article  CAS  PubMed  Google Scholar 

  36. Dorn JF, Zhang L, Paradis V, Edoh-Bedi D, Jusu S, Maddox PS, Maddox AS (2010) Actomyosin tube formation in polar body cytokinesis requires anillin in C. elegans. Curr Biol 20:2046–2051

    Article  CAS  PubMed  Google Scholar 

  37. Gbadegesin RA, Hall G, Adeyemo A, Hanke N, Tossidou I, Burchette J, Wu G, Homstad A, Sparks MA, Gomez J, Jiang R, Alonso A, Lavin P, Conlon P, Korstanje R, Stander MC, Shamsan G, Barua M, Spurney R, Singhal PC, Kopp JB, Haller H, Howell D, Pollak MR, Shaw AS, Schiffer M, Winn MP (2014) Mutations in the gene that encodes the F-actin binding protein anillin cause FSGS. J Am Soc Nephrol 25:1991–2002

    Article  CAS  PubMed  Google Scholar 

  38. Toret CP, D’Ambrosio MV, Vale RD, Simon MA, Nelson WJ (2014) A genome-wide screen identifies conserved protein hubs required for cadherin-mediated cell–cell adhesion. J Cell Biol 204:265–279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Reyes CC, Jin M, Breznau EB, Espino R, Delgado-Gonzalo R, Goryachev AB, Miller AL (2014) Anillin regulates cell-cell junction integrity by organizing junctional accumulation of Rho-GTP and actomyosin. Curr Biol 24:1263–1270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Liu Y, Nusrat A, Schnell FJ, Reaves TA, Walsh S, Pochet M, Parkos CA (2000) Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 113(Pt 13):2363–2374

    CAS  PubMed  Google Scholar 

  41. Baranwal S, Naydenov NG, Harris G, Dugina V, Morgan KG, Chaponnier C, Ivanov AI (2012) Nonredundant roles of cytoplasmic beta- and gamma-actin isoforms in regulation of epithelial apical junctions. Mol Biol Cell 23:3542–3553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Naydenov NG, Baranwal S, Khan S, Feygin A, Gupta P, Ivanov AI (2013) Novel mechanism of cytokine-induced disruption of epithelial barriers: janus kinase and protein kinase D-dependent downregulation of junction protein expression. Tissue Barriers 1:e25231

    Article  PubMed Central  PubMed  Google Scholar 

  43. Lou H, Park JJ, Phillips A, Loh YP (2013) gamma-Adducin promotes process outgrowth and secretory protein exit from the Golgi apparatus. J Mol Neurosci 49:1–10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Chen HC (2005) Cell-scatter assay. Methods Mol Biol 294:69–77

    PubMed  Google Scholar 

  45. Echard A, Hickson GR, Foley E, O’Farrell PH (2004) Terminal cytokinesis events uncovered after an RNAi screen. Curr Biol 14:1685–1693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Elbediwy A, Zihni C, Terry SJ, Clark P, Matter K, Balda MS (2012) Epithelial junction formation requires confinement of Cdc42 activity by a novel SH3BP1 complex. J Cell Biol 198:677–693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Guillemot L, Guerrera D, Spadaro D, Tapia R, Jond L, Citi S (2014) MgcRacGAP interacts with cingulin and paracingulin to regulate Rac1 activation and development of the tight junction barrier during epithelial junction assembly. Mol Biol Cell 25:1995–2005

    Article  PubMed Central  PubMed  Google Scholar 

  48. Priya R, Yap AS, Gomez GA (2013) E-cadherin supports steady-state Rho signaling at the epithelial zonula adherens. Differentiation 86:133–140

    Article  CAS  PubMed  Google Scholar 

  49. Ratheesh A, Gomez GA, Priya R, Verma S, Kovacs EM, Jiang K, Brown NH, Akhmanova A, Stehbens SJ, Yap AS (2012) Centralspindlin and alpha-catenin regulate Rho signalling at the epithelial zonula adherens. Nat Cell Biol 14:818–828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Tang VW, Brieher WM (2013) FSGS3/CD2AP is a barbed-end capping protein that stabilizes actin and strengthens adherens junctions. J Cell Biol 203:815–833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Bennett V, Baines AJ (2001) Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81:1353–1392

    CAS  PubMed  Google Scholar 

  52. Fowler VM (2012) The human erythrocyte plasma membrane: a rosetta stone for decoding membrane-cytoskeleton structure. Curr Top Membr 72:39–88

    Article  Google Scholar 

  53. Naydenov NG, Ivanov AI (2010) Adducins regulate remodeling of apical junctions in human epithelial cells. Mol Biol Cell 21:3506–3517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Abdi KM, Bennett V (2008) Adducin promotes micrometer-scale organization of β2-spectrin in lateral membranes of bronchial epithelial cells. Mol Biol Cell 19:536–545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Kizhatil K, Davis JQ, Davis L, Hoffman J, Hogan BL, Bennett V (2007) Ankyrin-G is a molecular partner of E-cadherin in epithelial cells and early embryos. J Biol Chem 282:26552–26561

    Article  CAS  PubMed  Google Scholar 

  56. Kizhatil K, Yoon W, Mohler PJ, Davis LH, Hoffman JA, Bennett V (2007) Ankyrin-G and β2-spectrin collaborate in biogenesis of lateral membrane of human bronchial epithelial cells. J Biol Chem 282:2029–2037

    Article  CAS  PubMed  Google Scholar 

  57. Kevil CG, Oshima T, Alexander JS (2001) The role of p38 MAP kinase in hydrogen peroxide mediated endothelial solute permeability. Endothelium 8:107–116

    CAS  PubMed  Google Scholar 

  58. Kojima T, Yamaguchi H, Ito T, Kyuno D, Kono T, Konno T, Sawada N (2013) Tight junctions in human pancreatic duct epithelial cells. Tissue barriers 1:e24894

    Article  PubMed Central  PubMed  Google Scholar 

  59. Naydenov NG, Hopkins AM, Ivanov AI (2009) c-Jun N-terminal kinase mediates disassembly of apical junctions in model intestinal epithelia. Cell Cycle 8:2110–2121

    Article  CAS  PubMed  Google Scholar 

  60. Samak G, Aggarwal S, Rao RK (2011) ERK is involved in EGF-mediated protection of tight junctions, but not adherens junctions, in acetaldehyde-treated Caco-2 cell monolayers. Am J Physiol Gastrointest Liver Physiol 301:G50–G59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Spindler V, Rotzer V, Dehner C, Kempf B, Gliem M, Radeva M, Hartlieb E, Harms GS, Schmidt E, Waschke J (2013) Peptide-mediated desmoglein 3 crosslinking prevents pemphigus vulgaris autoantibody-induced skin blistering. J Clin Invest 123:800–811

    CAS  PubMed Central  PubMed  Google Scholar 

  62. You H, Lei P, Andreadis ST (2013) JNK is a novel regulator of intercellular adhesion. Tissue Barriers 1:e26845

    Article  PubMed Central  PubMed  Google Scholar 

  63. Bennett BL, Sasaki DT, Murray BW, O’Leary EC, Sakata ST, Xu W, Leisten JC, Motiwala A, Pierce S, Satoh Y, Bhagwat SS, Manning AM, Anderson DW (2001) SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci U S A 98:13681–13686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Hall PA, Todd CB, Hyland PL, McDade SS, Grabsch H, Hillan KJ, Russell SH (2005) The septin-binding protein anillin is overexpressed in diverse human tumors. Clin Cancer Res 11:6780–6786

    Article  CAS  PubMed  Google Scholar 

  65. D’Avino PP, Takeda T, Capalbo L, Zhang W, Lilley KS, Laue ED, Glover DM (2008) Interaction between Anillin and RacGAP50C connects the actomyosin contractile ring with spindle microtubules at the cell division site. J Cell Sci 121:1151–1158

    Article  PubMed  Google Scholar 

  66. Frenette P, Haines E, Loloyan M, Kinal M, Pakarian P, Piekny A (2012) An anillin-Ect2 complex stabilizes central spindle microtubules at the cortex during cytokinesis. PLoS One 7:e34888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Gregory SL, Ebrahimi S, Milverton J, Jones WM, Bejsovec A, Saint R (2008) Cell division requires a direct link between microtubule-bound RacGAP and Anillin in the contractile ring. Curr Biol 18:25–29

    Article  CAS  PubMed  Google Scholar 

  68. Xia W, Mruk DD, Lee WM, Cheng CY (2006) Differential interactions between transforming growth factor-beta3/TbetaR1, TAB 1, and CD2AP disrupt blood-testis barrier and Sertoli-germ cell adhesion. J Biol Chem 281:16799–16813

    Article  CAS  PubMed  Google Scholar 

  69. Bennett V, Healy J (2009) Membrane domains based on ankyrin and spectrin associated with cell–cell interactions. Cold Spring Harb Perspect Biol 1:a003012

    Article  PubMed Central  PubMed  Google Scholar 

  70. Naydenov NG, Ivanov AI (2011) Spectrin-adducin membrane skeleton: a missing link between epithelial junctions and the actin cytoskeletion? Bioarchitecture 1:186–191

    Article  PubMed Central  PubMed  Google Scholar 

  71. Matsuoka Y, Li X, Bennett V (2000) Adducin: structure, function and regulation. Cell Mol Life Sci 57:884–895

    Article  CAS  PubMed  Google Scholar 

  72. Olson EN, Nordheim A (2010) Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 11:353–365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Zheng B, Han M, Bernier M, Wen JK (2009) Nuclear actin and actin-binding proteins in the regulation of transcription and gene expression. FEBS J 276:2669–2685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Chen CL, Lin YP, Lai YC, Chen HC (2011) α-Adducin translocates to the nucleus upon loss of cell–cell adhesions. Traffic 12:1327–1340

    Article  CAS  PubMed  Google Scholar 

  75. Miyauchi JT, Piermarini PM, Yang JD, Gilligan DM, Beyenbach KW (2013) Roles of PKC and phospho-adducin in transepithelial fluid secretion by Malpighian tubules of the yellow fever mosquito. Tissue Barriers 1:e23120

    Article  PubMed Central  PubMed  Google Scholar 

  76. Rötzer V, Breit A, Waschke J, Spindler V (2014) Adducin is required for desmosomal cohesion in keratinocytes. J Biol Chem 289:14925–14940

    Article  PubMed Central  PubMed  Google Scholar 

  77. Konno T, Ninomiya T, Kohno T, Kikuchi S, Sawada N, Kojima T (2014) c-Jun N-terminal kinase inhibitor SP600125 enhances barrier function and elongation of human pancreatic cancer cell line HPAC in a Ca-switch model. Histochem Cell Biol 16:16

    Google Scholar 

  78. Lee MH, Koria P, Qu J, Andreadis ST (2009) JNK phosphorylates beta-catenin and regulates adherens junctions. FASEB J 23:3874–3883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Lee MH, Padmashali R, Koria P, Andreadis ST (2011) JNK regulates binding of alpha-catenin to adherens junctions and cell-cell adhesion. FASEB J 25:613–623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Samak G, Chaudhry KK, Gangwar R, Narayanan D, Jaggar JH, Rao R (2015) Calcium/Ask1/MKK7/JNK2/c-Src signalling cascade mediates disruption of intestinal epithelial tight junctions by dextran sulfate sodium. Biochem J 465:503–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Al-Sadi R, Ye D, Boivin M, Guo S, Hashimi M, Ereifej L, Ma TY (2014) Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLoS One 9:e85345

    Article  PubMed Central  PubMed  Google Scholar 

  82. Carrozzino F, Pugnale P, Feraille E, Montesano R (2009) Inhibition of basal p38 or JNK activity enhances epithelial barrier function through differential modulation of claudin expression. Am J Physiol Cell Physiol 297:C775–C787

    Article  CAS  PubMed  Google Scholar 

  83. Kulshammer E, Uhlirova M (2013) The actin cross-linker Filamin/Cheerio mediates tumor malignancy downstream of JNK signaling. J Cell Sci 126:927–938

    Article  PubMed  Google Scholar 

  84. Ma PC, Tretiakova MS, Nallasura V, Jagadeeswaran R, Husain AN, Salgia R (2007) Downstream signalling and specific inhibition of c-MET/HGF pathway in small cell lung cancer: implications for tumour invasion. Br J Cancer 97:368–377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Ursitti JA, Petrich BG, Lee PC, Resneck WG, Ye X, Yang J, Randall WR, Bloch RJ, Wang Y (2007) Role of an alternatively spliced form of alphaII-spectrin in localization of connexin 43 in cardiomyocytes and regulation by stress-activated protein kinase. J Mol Cell Cardiol 42:572–581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Smith TC, Fridy PC, Li Y, Basil S, Arjun S, Friesen RM, Leszyk J, Chait BT, Rout MP, Luna EJ (2013) Supervillin binding to myosin II and synergism with anillin are required for cytokinesis. Mol Biol Cell 24:3603–3619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Charles A. Parkos, Y. Peng Loh, Enrique Rodriguez-Boulan, and Andrei Budanov for providing reagents for this study. Microscopy was performed at the VCU Department of Anatomy and Neurobiology Microscopy Facility, supported, in part, with funding from the NIH-NINDS Center core grant 5P30NS047463. This work was supported by National Institute of Health grants RO1 DK083968 and DK084953 to A.I.I.

Conflict of interests

The authors declared no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei I. Ivanov.

Additional information

D. Wang and G. K. Chadha contributed equally to the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1640 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Chadha, G.K., Feygin, A. et al. F-actin binding protein, anillin, regulates integrity of intercellular junctions in human epithelial cells. Cell. Mol. Life Sci. 72, 3185–3200 (2015). https://doi.org/10.1007/s00018-015-1890-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1890-6

Keywords

Navigation