Skip to main content
Log in

Proteasome assembly

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In eukaryotic cells, proteasomes are highly conserved protease complexes and eliminate unwanted proteins which are marked by poly-ubiquitin chains for degradation. The 26S proteasome consists of the proteolytic core particle, the 20S proteasome, and the 19S regulatory particle, which are composed of 14 and 19 different subunits, respectively. Proteasomes are the second-most abundant protein complexes and are continuously assembled from inactive precursor complexes in proliferating cells. The modular concept of proteasome assembly was recognized in prokaryotic ancestors and applies to eukaryotic successors. The efficiency and fidelity of eukaryotic proteasome assembly is achieved by several proteasome-dedicated chaperones that initiate subunit incorporation and control the quality of proteasome assemblies by transiently interacting with proteasome precursors. It is important to understand the mechanism of proteasome assembly as the proteasome has key functions in the turnover of short-lived proteins regulating diverse biological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    CAS  PubMed  Google Scholar 

  2. Hilt W, Wolf DH (2004) The ubiquitin-proteasome system: past, present and future. Cell Mol Life Sci 61(13):1545. doi:10.1007/s00018-004-4128-6

    CAS  PubMed  Google Scholar 

  3. Tanaka K (2013) The proteasome: from basic mechanisms to emerging roles. Keio J Med 62(1):1–12

    CAS  PubMed  Google Scholar 

  4. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513. doi:10.1146/annurev.biochem.78.081507.101607

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Marguerat S, Schmidt A, Codlin S, Chen W, Aebersold R, Bahler J (2012) Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 151(3):671–683. doi:10.1016/j.cell.2012.09.019

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Enenkel C (2011) Using native gel electrophoresis and phosphofluoroimaging to analyze GFP-tagged proteasomes. In: Dohmen RJ, Scheffner M (eds) Ubiquitin family modifiers and the proteasome: reviews and protocols. Humana Press, New York

    Google Scholar 

  7. Ramos PC, Hockendorff J, Johnson ES, Varshavsky A, Dohmen RJ (1998) Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 92(4):489–499

    CAS  PubMed  Google Scholar 

  8. Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92(3):367–380

    CAS  PubMed  Google Scholar 

  9. Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268(5210):533–539

    CAS  PubMed  Google Scholar 

  10. Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386(6624):463–471

    CAS  PubMed  Google Scholar 

  11. Kwon YD, Nagy I, Adams PD, Baumeister W, Jap BK (2004) Crystal structures of the Rhodococcus proteasome with and without its pro-peptides: implications for the role of the pro-peptide in proteasome assembly. J Mol Biol 335(1):233–245

    CAS  PubMed  Google Scholar 

  12. Hu G, Lin G, Wang M, Dick L, Xu RM, Nathan C, Li H (2006) Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate. Mol Microbiol 59(5):1417–1428. doi:10.1111/j.1365-2958.2005.05036.x

    CAS  PubMed  Google Scholar 

  13. Huber EM, Basler M, Schwab R, Heinemeyer W, Kirk CJ, Groettrup M, Groll M (2012) Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell 148(4):727–738. doi:10.1016/j.cell.2011.12.030

    CAS  PubMed  Google Scholar 

  14. Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, Yasuoka N, Tsukihara T (2002) The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure 10(5):609–618

    CAS  PubMed  Google Scholar 

  15. Seemuller E, Lupas A, Stock D, Lowe J, Huber R, Baumeister W (1995) Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268(5210):579–582

    CAS  PubMed  Google Scholar 

  16. Seemuller E, Lupas A, Baumeister W (1996) Autocatalytic processing of the 20S proteasome. Nature 382(6590):468–471. doi:10.1038/382468a0

    CAS  PubMed  Google Scholar 

  17. Heinemeyer W, Ramos PC, Dohmen RJ (2004) The ultimate nanoscale mincer: assembly, structure and active sites of the 20S proteasome core. Cell Mol Life Sci 61(13):1562–1578

    CAS  PubMed  Google Scholar 

  18. Rosenzweig R, Bronner V, Zhang D, Fushman D, Glickman MH (2012) Rpn1 and Rpn2 coordinate ubiquitin processing factors at proteasome. J Biol Chem 287(18):14659–14671. doi:10.1074/jbc.M111.316323

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Bar-Nun S, Glickman MH (2012) Proteasomal AAA-ATPases: structure and function. Biochim Biophys Acta 1823(1):67–82. doi:10.1016/j.bbamcr.2011.07.009

    CAS  PubMed  Google Scholar 

  20. Snider J, Thibault G, Houry WA (2008) The AAA + superfamily of functionally diverse proteins. Genome Biol 9(4):216. doi:10.1186/gb-2008-9-4-216

    PubMed Central  PubMed  Google Scholar 

  21. Sauer RT, Baker TA (2011) AAA + proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 80:587–612. doi:10.1146/annurev-biochem-060408-172623

    CAS  PubMed  Google Scholar 

  22. Striebel F, Kress W, Weber-Ban E (2009) Controlled destruction: AAA + ATPases in protein degradation from bacteria to eukaryotes. Curr Opin Struct Biol 19(2):209–217. doi:10.1016/j.sbi.2009.02.006

    CAS  PubMed  Google Scholar 

  23. Verma R, Aravind L, Oania R, McDonald WH, Yates JR 3rd, Koonin EV, Deshaies RJ (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298(5593):611–615. doi:10.1126/science.1075898

    CAS  PubMed  Google Scholar 

  24. Yao T, Cohen RE (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419(6905):403–407. doi:10.1038/nature01071

    CAS  PubMed  Google Scholar 

  25. Hanna J, Hathaway NA, Tone Y, Crosas B, Elsasser S, Kirkpatrick DS, Leggett DS, Gygi SP, King RW, Finley D (2006) Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127(1):99–111. doi:10.1016/j.cell.2006.07.038

    CAS  PubMed  Google Scholar 

  26. Zwickl P, Grziwa A, Puhler G, Dahlmann B, Lottspeich F, Baumeister W (1992) Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry 31(4):964–972

    CAS  PubMed  Google Scholar 

  27. Zwickl P, Kleinz J, Baumeister W (1994) Critical elements in proteasome assembly. Nat Struct Mol Biol 1(11):765–770

    CAS  Google Scholar 

  28. Zuhl F, Seemuller E, Golbik R, Baumeister W (1997) Dissecting the assembly pathway of the 20S proteasome. FEBS Lett 418(1–2):189–194

    CAS  PubMed  Google Scholar 

  29. Sharon M, Witt S, Glasmacher E, Baumeister W, Robinson CV (2007) Mass spectrometry reveals the missing links in the assembly pathway of the bacterial 20 S proteasome. J Biol Chem 282(25):18448–18457. doi:10.1074/jbc.M701534200

    CAS  PubMed  Google Scholar 

  30. Kusmierczyk AR, Kunjappu MJ, Funakoshi M, Hochstrasser M (2008) A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat Struct Mol Biol 15(3):237–244. doi:10.1038/nsmb.1389

    CAS  PubMed  Google Scholar 

  31. Kumoi K, Satoh T, Murata K, Hiromoto T, Mizushima T, Kamiya Y, Noda M, Uchiyama S, Yagi H, Kato K (2013) An archaeal homolog of proteasome assembly factor functions as a proteasome activator. PLoS ONE 8(3):e60294. doi:10.1371/journal.pone.0060294

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Gerards WL, Enzlin J, Haner M, Hendriks IL, Aebi U, Bloemendal H, Boelens W (1997) The human alpha-type proteasomal subunit HsC8 forms a double ringlike structure, but does not assemble into proteasome-like particles with the beta-type subunits HsDelta or HsBPROS26. J Biol Chem 272(15):10080–10086

    CAS  PubMed  Google Scholar 

  33. Sugiyama M, Kurimoto E, Yagi H, Mori K, Fukunaga T, Hirai M, Zaccai G, Kato K (2011) Kinetic asymmetry of subunit exchange of homooligomeric protein as revealed by deuteration-assisted small-angle neutron scattering. Biophys J 101(8):2037–2042. doi:10.1016/j.bpj.2011.09.004

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Le Tallec B, Barrault MB, Courbeyrette R, Guerois R, Marsolier-Kergoat MC, Peyroche A (2007) 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol Cell 27(4):660–674. doi:10.1016/j.molcel.2007.06.025

    PubMed  Google Scholar 

  35. Witt E, Zantopf D, Schmidt M, Kraft R, Kloetzel PM, Kruger E (2000) Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7(beta 5i) incorporation into 20 S proteasomes. J Mol Biol 301(1):1–9. doi:10.1006/jmbi.2000.3959

    CAS  PubMed  Google Scholar 

  36. Burri L, Hockendorff J, Boehm U, Klamp T, Dohmen RJ, Levy F (2000) Identification and characterization of a mammalian protein interacting with 20S proteasome precursors. Proc Natl Acad Sci USA 97(19):10348–10353. doi:10.1073/pnas.190268597

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Griffin TA, Slack JP, McCluskey TS, Monaco JJ, Colbert RA (2000) Identification of proteassemblin, a mammalian homologue of the yeast protein, Ump1p, that is required for normal proteasome assembly. Mol Cell Biol Res Commun 3(4):212–217. doi:10.1006/mcbr.2000.0213

    CAS  PubMed  Google Scholar 

  38. Hirano Y, Hendil KB, Yashiroda H, Iemura S, Nagane R, Hioki Y, Natsume T, Tanaka K, Murata S (2005) A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 437(7063):1381–1385

    CAS  PubMed  Google Scholar 

  39. Nandi D, Woodward E, Ginsburg DB, Monaco JJ (1997) Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor beta subunits. EMBO J 16(17):5363–5375. doi:10.1093/emboj/16.17.5363

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Frentzel S, Pesold-Hurt B, Seelig A, Kloetzel PM (1994) 20 S proteasomes are assembled via distinct precursor complexes. Processing of LMP2 and LMP7 proproteins takes place in 13–16 S preproteasome complexes. J Mol Biol 236(4):975–981

    CAS  PubMed  Google Scholar 

  41. Li X, Kusmierczyk AR, Wong P, Emili A, Hochstrasser M (2007) Beta-subunit appendages promote 20S proteasome assembly by overcoming an Ump1-dependent checkpoint. EMBO J 26(9):2339–2349. doi:10.1038/sj.emboj.7601681

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Schmidtke G, Kraft R, Kostka S, Henklein P, Frommel C, Lowe J, Huber R, Kloetzel PM, Schmidt M (1996) Analysis of mammalian 20S proteasome biogenesis: the maturation of beta-subunits is an ordered two-step mechanism involving autocatalysis. EMBO J 15(24):6887–6898

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Hirano Y, Kaneko T, Okamoto K, Bai M, Yashiroda H, Furuyama K, Kato K, Tanaka K, Murata S (2008) Dissecting beta-ring assembly pathway of the mammalian 20S proteasome. EMBO J 27(16):2204–2213. doi:10.1038/emboj.2008.148

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Marques AJ, Glanemann C, Ramos PC, Dohmen RJ (2007) The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation. J Biol Chem 282(48):34869–34876. doi:10.1074/jbc.M705836200

    CAS  PubMed  Google Scholar 

  45. Schmidtke G, Schmidt M, Kloetzel PM (1997) Maturation of mammalian 20S proteasome: purification and characterization of 13 S and 16 S proteasome precursor complexes. J Mol Biol 268(1):95–106. doi:10.1006/jmbi.1997.0947

    CAS  PubMed  Google Scholar 

  46. Fehlker M, Wendler P, Lehmann A, Enenkel C (2003) Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly. EMBO Rep 4(10):959–963. doi:10.1038/sj.embor.embor938

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Stadtmueller BM, Kish-Trier E, Ferrell K, Petersen CN, Robinson H, Myszka DG, Eckert DM, Formosa T, Hill CP (2012) Structure of a proteasome Pba1-Pba2 complex: implications for proteasome assembly, activation, and biological function. J Biol Chem 287(44):37371–37382. doi:10.1074/jbc.M112.367003

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Stadtmueller BM, Hill CP (2011) Proteasome activators. Mol Cell 41(1):8–19. doi:10.1016/j.molcel.2010.12.020

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Saeki Y, Tanaka K (2007) Unlocking the proteasome door. Mol Cell 27(6):865–867. doi:10.1016/j.molcel.2007.09.001

    CAS  PubMed  Google Scholar 

  50. Kusmierczyk AR, Kunjappu MJ, Kim RY, Hochstrasser M (2011) A conserved 20S proteasome assembly factor requires a C-terminal HbYX motif for proteasomal precursor binding. Nat Struct Mol Biol 18(5):622–629. doi:10.1038/nsmb.2027

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Yashiroda H, Mizushima T, Okamoto K, Kameyama T, Hayashi H, Kishimoto T, Niwa S, Kasahara M, Kurimoto E, Sakata E, Takagi K, Suzuki A, Hirano Y, Murata S, Kato K, Yamane T, Tanaka K (2008) Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat Struct Mol Biol 15(3):228–236. doi:10.1038/nsmb.1386

    CAS  PubMed  Google Scholar 

  52. Hirano Y, Hayashi H, Iemura S, Hendil KB, Niwa S, Kishimoto T, Kasahara M, Natsume T, Tanaka K, Murata S (2006) Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes. Mol Cell 24(6):977–984

    CAS  PubMed  Google Scholar 

  53. Ramos PC, Marques AJ, London MK, Dohmen RJ (2004) Role of C-terminal extensions of subunits beta2 and beta7 in assembly and activity of eukaryotic proteasomes. J Biol Chem 279(14):14323–14330. doi:10.1074/jbc.M308757200

    CAS  PubMed  Google Scholar 

  54. Jager S, Groll M, Huber R, Wolf DH, Heinemeyer W (1999) Proteasome beta-type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function. J Mol Biol 291(4):997–1013. doi:10.1006/jmbi.1999.2995

    CAS  PubMed  Google Scholar 

  55. Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf DH (1997) The active sites of the eukaryotic 20S proteasome and their involvement in subunit precursor processing. J Biol Chem 272(40):25200–25209

    CAS  PubMed  Google Scholar 

  56. Groll M, Heinemeyer W, Jager S, Ullrich T, Bochtler M, Wolf DH, Huber R (1999) The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proc Natl Acad Sci USA 96(20):10976–10983

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Kingsbury DJ, Griffin TA, Colbert RA (2000) Novel propeptide function in 20 S proteasome assembly influences beta subunit composition. J Biol Chem 275(31):24156–24162. doi:10.1074/jbc.M001742200

    CAS  PubMed  Google Scholar 

  58. De M, Jayarapu K, Elenich L, Monaco JJ, Colbert RA, Griffin TA (2003) Beta 2 subunit propeptides influence cooperative proteasome assembly. J Biol Chem 278(8):6153–6159. doi:10.1074/jbc.M209292200

    CAS  PubMed  Google Scholar 

  59. Schmidt M, Zantopf D, Kraft R, Kostka S, Preissner R, Kloetzel PM (1999) Sequence information within proteasomal prosequences mediates efficient integration of beta-subunits into the 20S proteasome complex. J Mol Biol 288(1):117–128. doi:10.1006/jmbi.1999.2660

    CAS  PubMed  Google Scholar 

  60. Shinde U, Inouye M (2000) Intramolecular chaperones: polypeptide extensions that modulate protein folding. Semin Cell Develop Biol 11(1):35–44. doi:10.1006/scdb.1999.0349

    CAS  Google Scholar 

  61. Arendt CS, Hochstrasser M (1999) Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. EMBO J 18(13):3575–3585

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Chen P, Hochstrasser M (1996) Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell 86(6):961–972

    CAS  PubMed  Google Scholar 

  63. Heink S, Fricke B, Ludwig D, Kloetzel PM, Kruger E (2006) Tumor cell lines expressing the proteasome subunit isoform LMP7E1 exhibit immunoproteasome deficiency. Cancer Res 66(2):649–652. doi:10.1158/0008-5472.CAN-05-2872

    CAS  PubMed  Google Scholar 

  64. Fricke B, Heink S, Steffen J, Kloetzel PM, Kruger E (2007) The proteasome maturation protein POMP facilitates major steps of 20S proteasome formation at the endoplasmic reticulum. EMBO Rep 8(12):1170–1175. doi:10.1038/sj.embor.7401091

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Sa-Moura B, Simoes AM, Fraga J, Fernandes H, Abreu IA, Botelho HM, Gomes CM, Marques AJ, Dohmen RJ, Ramos PC, Macedo-Ribeiro S (2013) Biochemical and biophysical characterization of recombinant yeast proteasome maturation factor ump1. Comput Struct Biotech J 7:e201304006. doi:10.5936/csbj.201304006

    Google Scholar 

  66. Uekusa Y, Okawa K, Yagi-Utsumi M, Serve O, Nakagawa Y, Mizushima T, Yagi H, Saeki Y, Tanaka K, Kato K (2013) Backbone 1H, 13C, and 15N assignments of yeast Ump1, an intrinsically disordered protein that functions as a proteasome assembly chaperone. Biomol NMR Assign. doi:10.1007/s12104-013-9523-1

    PubMed  Google Scholar 

  67. Schmidt M, Haas W, Crosas B, Santamaria PG, Gygi SP, Walz T, Finley D (2005) The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat Struct Mol Biol 12(4):294–303. doi:10.1038/nsmb914

    CAS  PubMed  Google Scholar 

  68. Ustrell V, Hoffman L, Pratt G, Rechsteiner M (2002) PA200, a nuclear proteasome activator involved in DNA repair. EMBO J 21(13):3516–3525. doi:10.1093/emboj/cdf333

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Dange T, Smith D, Noy T, Rommel PC, Jurzitza L, Cordero RJ, Legendre A, Finley D, Goldberg AL, Schmidt M (2011) Blm10 protein promotes proteasomal substrate turnover by an active gating mechanism. J Biol Chem 286(50):42830–42839. doi:10.1074/jbc.M111.300178

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Lopez AD, Tar K, Krugel U, Dange T, Ros IG, Schmidt M (2011) Proteasomal degradation of Sfp1 contributes to the repression of ribosome biogenesis during starvation and is mediated by the proteasome activator Blm10. Mol Biol Cell 22(5):528–540. doi:10.1091/mbc.E10-04-0352

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Qian MX, Pang Y, Liu CH, Haratake K, Du BY, Ji DY, Wang GF, Zhu QQ, Song W, Yu Y, Zhang XX, Huang HT, Miao S, Chen LB, Zhang ZH, Liang YN, Liu S, Cha H, Yang D, Zhai Y, Komatsu T, Tsuruta F, Li H, Cao C, Li W, Li GH, Cheng Y, Chiba T, Wang L, Goldberg AL, Shen Y, Qiu XB (2013) Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell 153(5):1012–1024. doi:10.1016/j.cell.2013.04.032

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Lehmann A, Jechow K, Enenkel C (2008) Blm10 binds to pre-activated proteasome core particles with open gate conformation. EMBO Rep 9(12):1237–1243. doi:10.1038/embor.2008.190

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Weberruss MH, Savulescu AF, Jando J, Bissinger T, Harel A, Glickman MH, Enenkel C (2013) Blm10 facilitates nuclear import of proteasome core particles. EMBO J. doi:10.1038/emboj.2013.192

    PubMed Central  PubMed  Google Scholar 

  74. Guillaume B, Chapiro J, Stroobant V, Colau D, Van Holle B, Parvizi G, Bousquet-Dubouch MP, Theate I, Parmentier N, Van den Eynde BJ (2010) Two abundant proteasome subtypes that uniquely process some antigens presented by HLA class I molecules. Proc Natl Acad Sci USA 107(43):18599–18604. doi:10.1073/pnas.1009778107

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Kloetzel PM, Ossendorp F (2004) Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol 16(1):76–81

    CAS  PubMed  Google Scholar 

  76. Rock KL, York IA, Goldberg AL (2004) Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat Immunol 5(7):670–677. doi:10.1038/ni1089

    CAS  PubMed  Google Scholar 

  77. Griffin TA, Nandi D, Cruz M, Fehling HJ, Kaer LV, Monaco JJ, Colbert RA (1998) Immunoproteasome assembly: cooperative incorporation of interferon gamma (IFN-gamma)-inducible subunits. J Exp Med 187(1):97–104

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Groettrup M, Standera S, Stohwasser R, Kloetzel PM (1997) The subunits MECL-1 and LMP2 are mutually required for incorporation into the 20S proteasome. Proc Natl Acad Sci USA 94(17):8970–8975

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Heink S, Ludwig D, Kloetzel PM, Kruger E (2005) IFN-gamma-induced immune adaptation of the proteasome system is an accelerated and transient response. Proc Natl Acad Sci USA 102(26):9241–9246. doi:10.1073/pnas.0501711102

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Murata S, Takahama Y, Tanaka K (2008) Thymoproteasome: probable role in generating positively selecting peptides. Curr Opin Immunol 20(2):192–196. doi:10.1016/j.coi.2008.03.002

    CAS  PubMed  Google Scholar 

  81. Zaiss DM, Standera S, Holzhutter H, Kloetzel P, Sijts AJ (1999) The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes. FEBS Lett 457(3):333–338

    CAS  PubMed  Google Scholar 

  82. Zaiss DM, Standera S, Kloetzel PM, Sijts AJ (2002) PI31 is a modulator of proteasome formation and antigen processing. Proc Natl Acad Sci USA 99(22):14344–14349. doi:10.1073/pnas.212257299

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Preckel T, Fung-Leung WP, Cai Z, Vitiello A, Salter-Cid L, Winqvist O, Wolfe TG, Von Herrath M, Angulo A, Ghazal P, Lee JD, Fourie AM, Wu Y, Pang J, Ngo K, Peterson PA, Fruh K, Yang Y (1999) Impaired immunoproteasome assembly and immune responses in PA28−/− mice. Science 286(5447):2162–2165

    CAS  PubMed  Google Scholar 

  84. Belote JM, Zhong L (2009) Duplicated proteasome subunit genes in Drosophila and their roles in spermatogenesis. Heredity 103(1):23–31. doi:10.1038/hdy.2009.23

    CAS  PubMed  Google Scholar 

  85. Fu H, Doelling JH, Arendt CS, Hochstrasser M, Vierstra RD (1998) Molecular organization of the 20S proteasome gene family from Arabidopsis thaliana. Genetics 149(2):677–692

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Niewerth D, Kaspers GJ, Assaraf YG, van Meerloo J, Kirk CJ, Anderl J, Blank JL, van de Ven PM, Zweegman S, Jansen G, Cloos J (2014) Interferon-gamma-induced upregulation of immunoproteasome subunit assembly overcomes bortezomib resistance in human hematological cell lines. J Hematol Oncol 7(1):7. doi:10.1186/1756-8722-7-7

    PubMed Central  PubMed  Google Scholar 

  87. Sijts EJ, Kloetzel PM (2011) The role of the proteasome in the generation of MHC class I ligands and immune responses. Cell Mol Life Sci 68(9):1491–1502. doi:10.1007/s00018-011-0657-y

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Tanaka K, Mizushima T, Saeki Y (2012) The proteasome: molecular machinery and pathophysiological roles. Biol Chem 393(4):217–234. doi:10.1515/hsz-2011-0285

    CAS  PubMed  Google Scholar 

  89. Effantin G, Rosenzweig R, Glickman MH, Steven AC (2009) Electron microscopic evidence in support of alpha-solenoid models of proteasomal subunits Rpn1 and Rpn2. J Mol Biol 386(5):1204–1211. doi:10.1016/j.jmb.2009.01.039

    CAS  PubMed Central  PubMed  Google Scholar 

  90. He J, Kulkarni K, da Fonseca PC, Krutauz D, Glickman MH, Barford D, Morris EP (2012) The structure of the 26S proteasome subunit Rpn2 reveals its PC repeat domain as a closed toroid of two concentric alpha-helical rings. Structure 20(3):513–521. doi:10.1016/j.str.2011.12.015

    CAS  PubMed  Google Scholar 

  91. Sakata E, Bohn S, Mihalache O, Kiss P, Beck F, Nagy I, Nickell S, Tanaka K, Saeki Y, Forster F, Baumeister W (2012) Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy. Proc Natl Acad Sci USA 109(5):1479–1484. doi:10.1073/pnas.1119394109

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Tian G, Park S, Lee MJ, Huck B, McAllister F, Hill CP, Gygi SP, Finley D (2011) An asymmetric interface between the regulatory and core particles of the proteasome. Nat Struct Mol Biol 18(11):1259–1267. doi:10.1038/nsmb.2147

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A (2012) Complete subunit architecture of the proteasome regulatory particle. Nature 482(7384):186–191. doi:10.1038/nature10774

    CAS  PubMed Central  PubMed  Google Scholar 

  94. da Fonseca PC, He J, Morris EP (2012) Molecular model of the human 26S proteasome. Mol Cell 46(1):54–66. doi:10.1016/j.molcel.2012.03.026

    PubMed  Google Scholar 

  95. Tomko RJ Jr, Funakoshi M, Schneider K, Wang J, Hochstrasser M (2010) Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol Cell 38(3):393–403. doi:10.1016/j.molcel.2010.02.035

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Gillette TG, Kumar B, Thompson D, Slaughter CA, DeMartino GN (2008) Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. J Biol Chem 283(46):31813–31822. doi:10.1074/jbc.M805935200

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL (2007) Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry. Mol Cell 27(5):731–744. doi:10.1016/j.molcel.2007.06.033

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Beckwith R, Estrin E, Worden EJ, Martin A (2013) Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA + unfoldase. Nat Struct Mol Biol 20(10):1164–1172. doi:10.1038/nsmb.2659

    CAS  PubMed  Google Scholar 

  99. Takagi K, Kim S, Yukii H, Ueno M, Morishita R, Endo Y, Kato K, Tanaka K, Saeki Y, Mizushima T (2012) Structural basis for specific recognition of Rpt1p, an ATPase subunit of 26S proteasome, by proteasome-dedicated chaperone Hsm3p. J Biol Chem 287(15):12172–12182. doi:10.1074/jbc.M112.345876

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Peth A, Uchiki T, Goldberg AL (2010) ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation. Mol Cell 40(4):671–681. doi:10.1016/j.molcel.2010.11.002

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Barthelme D, Chen JZ, Grabenstatter J, Baker TA, Sauer RT (2014) Architecture and assembly of the archaeal Cdc48*20S proteasome. Proc Natl Acad Sci USA 111(17):E1687–E1694. doi:10.1073/pnas.1404823111

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Le Tallec B, Barrault MB, Guerois R, Carre T, Peyroche A (2009) Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome. Mol Cell 33(3):389–399. doi:10.1016/j.molcel.2009.01.010

    PubMed  Google Scholar 

  103. Funakoshi M, Tomko RJ Jr, Kobayashi H, Hochstrasser M (2009) Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell 137(5):887–899. doi:10.1016/j.cell.2009.04.061

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Park S, Roelofs J, Kim W, Robert J, Schmidt M, Gygi SP, Finley D (2009) Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature 459(7248):866–870. doi:10.1038/nature08065

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Roelofs J, Park S, Haas W, Tian G, McAllister FE, Huo Y, Lee BH, Zhang F, Shi Y, Gygi SP, Finley D (2009) Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 459(7248):861–865. doi:10.1038/nature08063

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Saeki Y, Toh EA, Kudo T, Kawamura H, Tanaka K (2009) Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 137(5):900–913. doi:10.1016/j.cell.2009.05.005

    CAS  PubMed  Google Scholar 

  107. Kaneko T, Hamazaki J, Iemura S, Sasaki K, Furuyama K, Natsume T, Tanaka K, Murata S (2009) Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell 137(5):914–925. doi:10.1016/j.cell.2009.05.008

    CAS  PubMed  Google Scholar 

  108. Park S, Li X, Kim HM, Singh CR, Tian G, Hoyt MA, Lovell S, Battaile KP, Zolkiewski M, Coffino P, Roelofs J, Cheng Y, Finley D (2013) Reconfiguration of the proteasome during chaperone-mediated assembly. Nature 497(7450):512–516. doi:10.1038/nature12123

    CAS  PubMed  Google Scholar 

  109. Thompson D, Hakala K, DeMartino GN (2009) Subcomplexes of PA700, the 19 S regulator of the 26S proteasome, reveal relative roles of AAA subunits in 26S proteasome assembly and activation and ATPase activity. J Biol Chem 284(37):24891–24903. doi:10.1074/jbc.M109.023218

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Barrault MB, Richet N, Godard C, Murciano B, Le Tallec B, Rousseau E, Legrand P, Charbonnier JB, Le Du MH, Guerois R, Ochsenbein F, Peyroche A (2012) Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly. Proc Natl Acad Sci USA 109(17):E1001–E1010. doi:10.1073/pnas.1116538109

    PubMed Central  PubMed  Google Scholar 

  111. Besche HC, Peth A, Goldberg AL (2009) Getting to first base in proteasome assembly. Cell 138(1):25–28. doi:10.1016/j.cell.2009.06.035

    CAS  PubMed  Google Scholar 

  112. Murata S, Yashiroda H, Tanaka K (2009) Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol 10(2):104–115. doi:10.1038/nrm2630

    CAS  PubMed  Google Scholar 

  113. Satoh T, Saeki Y, Hiromoto T, Wang YH, Uekusa Y, Yagi H, Yoshihara H, Yagi-Utsumi M, Mizushima T, Tanaka K, Kato K (2014) Structural basis for proteasome formation controlled by an assembly chaperone nas2. Structure 22(5):731–743. doi:10.1016/j.str.2014.02.014

    CAS  PubMed  Google Scholar 

  114. Godderz D, Dohmen RJ (2009) Hsm3/S5b joins the ranks of 26S proteasome assembly chaperones. Mol Cell 33(4):415–416. doi:10.1016/j.molcel.2009.02.007

    PubMed  Google Scholar 

  115. Hendil KB, Kriegenburg F, Tanaka K, Murata S, Lauridsen AM, Johnsen AH, Hartmann-Petersen R (2009) The 20S proteasome as an assembly platform for the 19S regulatory complex. J Mol Biol 394(2):320–328. doi:10.1016/j.jmb.2009.09.038

    CAS  PubMed  Google Scholar 

  116. Savulescu AF, Shorer H, Kleifeld O, Cohen I, Gruber R, Glickman MH, Harel A (2011) Nuclear import of an intact preassembled proteasome particle. Mol Biol Cell 22(6):880–891. doi:10.1091/mbc.E10-07-0595

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Pathare GR, Nagy I, Bohn S, Unverdorben P, Hubert A, Korner R, Nickell S, Lasker K, Sali A, Tamura T, Nishioka T, Forster F, Baumeister W, Bracher A (2012) The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. Proc Natl Acad Sci USA 109(1):149–154. doi:10.1073/pnas.1117648108

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Lam YA, Xu W, DeMartino GN, Cohen RE (1997) Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 385(6618):737–740. doi:10.1038/385737a0

    CAS  PubMed  Google Scholar 

  119. Pathare GR, Nagy I, Sledz P, Anderson DJ, Zhou HJ, Pardon E, Steyaert J, Forster F, Bracher A, Baumeister W (2014) Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11. Proc Natl Acad Sci USA 111(8):2984–2989. doi:10.1073/pnas.1400546111

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Isono E, Nishihara K, Saeki Y, Yashiroda H, Kamata N, Ge L, Ueda T, Kikuchi Y, Tanaka K, Nakano A, Toh-e A (2007) The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome. Mol Biol Cell 18(2):569–580. doi:10.1091/mbc.E06-07-0635

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Fukunaga K, Kudo T, Toh-e A, Tanaka K, Saeki Y (2010) Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae. Biochem Biophys Res Commun 396(4):1048–1053. doi:10.1016/j.bbrc.2010.05.061

    CAS  PubMed  Google Scholar 

  122. Tomko RJ Jr, Hochstrasser M (2011) Incorporation of the Rpn12 subunit couples completion of proteasome regulatory particle lid assembly to lid-base joining. Mol Cell 44(6):907–917. doi:10.1016/j.molcel.2011.11.020

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Estrin E, Lopez-Blanco JR, Chacon P, Martin A (2013) Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid. Structure 21(9):1624–1635. doi:10.1016/j.str.2013.06.023

    CAS  PubMed  Google Scholar 

  124. Tomko RJ Jr, Hochstrasser M (2014) The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis. Mol Cell 53(3):433–443. doi:10.1016/j.molcel.2013.12.009

    CAS  PubMed  Google Scholar 

  125. Orlowski M, Wilk S (2000) Catalytic activities of the 20S proteasome, a multicatalytic proteinase complex. Arch Biochem Biophys 383(1):1–16. doi:10.1006/abbi.2000.2036

    CAS  PubMed  Google Scholar 

  126. Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D (2000) A gated channel into the proteasome core particle. Nat Struct Mol Biol 7(11):1062–1067. doi:10.1038/80992

    CAS  Google Scholar 

  127. Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA, Finley D (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94(5):615–623

    CAS  PubMed  Google Scholar 

  128. Kriegenburg F, Seeger M, Saeki Y, Tanaka K, Lauridsen AM, Hartmann-Petersen R, Hendil KB (2008) Mammalian 26S proteasomes remain intact during protein degradation. Cell 135(2):355–365. doi:10.1016/j.cell.2008.08.032

    CAS  PubMed  Google Scholar 

  129. Driscoll J, Goldberg AL (1990) The proteasome (multicatalytic protease) is a component of the 1500-kDa proteolytic complex which degrades ubiquitin-conjugated proteins. J Biol Chem 265(9):4789–4792

    CAS  PubMed  Google Scholar 

  130. Armon T, Ganoth D, Hershko A (1990) Assembly of the 26 S complex that degrades proteins ligated to ubiquitin is accompanied by the formation of ATPase activity. J Biol Chem 265(34):20723–20726

    CAS  PubMed  Google Scholar 

  131. Bajorek M, Finley D, Glickman MH (2003) Proteasome disassembly and downregulation is correlated with viability during stationary phase. Curr Biol 13(13):1140–1144

    CAS  PubMed  Google Scholar 

  132. Tai HC, Besche H, Goldberg AL, Schuman EM (2010) Characterization of the brain 26S proteasome and its interacting proteins. Front Mol Neurosci 3:12. doi:10.3389/fnmol.2010.00012

    PubMed Central  PubMed  Google Scholar 

  133. Fujimuro M, Takada H, Saeki Y, Toh-e A, Tanaka K, Yokosawa H (1998) Growth-dependent change of the 26S proteasome in budding yeast. Biochemical and biophysical research communications 251(3):818–823. doi:10.1006/bbrc.1998.9560

    CAS  PubMed  Google Scholar 

  134. Hanna J, Waterman D, Boselli M, Finley D (2012) Spg5 protein regulates the proteasome in quiescence. J Biol Chem 287(41):34400–34409. doi:10.1074/jbc.M112.390294

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Saunier R, Esposito M, Dassa EP, Delahodde A (2013) Integrity of the Saccharomyces cerevisiae Rpn11 protein is critical for formation of proteasome storage granules (PSG) and survival in stationary phase. PLoS ONE 8(8):e70357. doi:10.1371/journal.pone.0070357

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Imai J, Maruya M, Yashiroda H, Yahara I, Tanaka K (2003) The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J 22(14):3557–3567. doi:10.1093/emboj/cdg349

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Satoh K, Sasajima H, Nyoumura KI, Yokosawa H, Sawada H (2001) Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit. Biochemistry 40(2):314–319

    CAS  PubMed  Google Scholar 

  138. Bose S, Stratford FL, Broadfoot KI, Mason GG, Rivett AJ (2004) Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon. Biochem J 378(Pt 1):177–184. doi:10.1042/BJ20031122

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Guo X, Engel JL, Xiao J, Tagliabracci VS, Wang X, Huang L, Dixon JE (2011) UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity. Proc Natl Acad Sci USA 108(46):18649–18654. doi:10.1073/pnas.1113170108

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Kajava AV, Gorbea C, Ortega J, Rechsteiner M, Steven AC (2004) New HEAT-like repeat motifs in proteins regulating proteasome structure and function. J Struct Biol 146(3):425–430. doi:10.1016/j.jsb.2004.01.013

    CAS  PubMed  Google Scholar 

  141. Leggett DS, Hanna J, Borodovsky A, Crosas B, Schmidt M, Baker RT, Walz T, Ploegh H, Finley D (2002) Multiple associated proteins regulate proteasome structure and function. Mol Cell 10(3):495–507

    CAS  PubMed  Google Scholar 

  142. Kleijnen MF, Roelofs J, Park S, Hathaway NA, Glickman M, King RW, Finley D (2007) Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat Struct Mol Biol 14(12):1180–1188. doi:10.1038/nsmb1335

    CAS  PubMed  Google Scholar 

  143. Gorbea C, Goellner GM, Teter K, Holmes RK, Rechsteiner M (2004) Characterization of mammalian Ecm29, a 26 S proteasome-associated protein that localizes to the nucleus and membrane vesicles. J Biol Chem 279(52):54849–54861

    CAS  PubMed  Google Scholar 

  144. Enenkel C (2014) Proteasome dynamics. Biochim Biophys Acta 1843(1):39–46. doi:10.1016/j.bbamcr.2013.03.023

    CAS  PubMed  Google Scholar 

  145. Park S, Kim W, Tian G, Gygi SP, Finley D (2011) Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J Biol Chem 286(42):36652–36666. doi:10.1074/jbc.M111.285924

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Panasenko OO, Collart MA (2011) Not4 E3 ligase contributes to proteasome assembly and functional integrity in part through Ecm29. Mol Cell Biol 31(8):1610–1623. doi:10.1128/MCB.01210-10

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Lehmann A, Niewienda A, Jechow K, Janek K, Enenkel C (2010) Ecm29 fulfils quality control functions in proteasome assembly. Mol Cell 38(6):879–888. doi:10.1016/j.molcel.2010.06.016

    CAS  PubMed  Google Scholar 

  148. Bousquet-Dubouch MP, Nguen S, Bouyssie D, Burlet-Schiltz O, French SW, Monsarrat B, Bardag-Gorce F (2009) Chronic ethanol feeding affects proteasome-interacting proteins. Proteomics 9(13):3609–3622. doi:10.1002/pmic.200800959

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Wang X, Yen J, Kaiser P, Huang L (2010) Regulation of the 26S proteasome complex during oxidative stress. Sci Signal 3(151):ra88. doi:10.1126/scisignal.2001232

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Akahane T, Sahara K, Yashiroda H, Tanaka K, Murata S (2013) Involvement of Bag6 and the TRC pathway in proteasome assembly. Nat Commun 4:2234. doi:10.1038/ncomms3234

    PubMed  Google Scholar 

  151. Sahara K, Kogleck L, Yashiroda H, Murata S (2014) The mechanism for molecular assembly of the proteasome. Adv Biol Regul 54:51–58. doi:10.1016/j.jbior.2013.09.010

    CAS  PubMed  Google Scholar 

  152. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686–691

    CAS  PubMed  Google Scholar 

  153. Lehmann A, Janek K, Braun B, Kloetzel PM, Enenkel C (2002) 20 S proteasomes are imported as precursor complexes into the nucleus of yeast. J Mol Biol 317(3):401–413. doi:10.1006/jmbi.2002.5443

    CAS  PubMed  Google Scholar 

  154. Kremer M, Henn A, Kolb C, Basler M, Moebius J, Guillaume B, Leist M, Van den Eynde BJ, Groettrup M (2010) Reduced immunoproteasome formation and accumulation of immunoproteasomal precursors in the brains of lymphocytic choriomeningitis virus-infected mice. J Immunol 185(9):5549–5560. doi:10.4049/jimmunol.1001517

    CAS  PubMed  Google Scholar 

  155. Hoefer MM, Boneberg EM, Grotegut S, Kusch J, Illges H (2006) Possible tetramerisation of the proteasome maturation factor POMP/proteassemblin/hUmp1 and its subcellular localisation. Int J Biol Macromol 38(3–5):259–267

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Paula Ramos for critical reading of the manuscript. This work was supported by NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cordula Enenkel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Z.C., Enenkel, C. Proteasome assembly. Cell. Mol. Life Sci. 71, 4729–4745 (2014). https://doi.org/10.1007/s00018-014-1699-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1699-8

Keywords

Navigation