Skip to main content

Advertisement

Log in

The growth plate’s response to load is partially mediated by mechano-sensing via the chondrocytic primary cilium

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mechanical load plays a significant role in bone and growth-plate development. Chondrocytes sense and respond to mechanical stimulation; however, the mechanisms by which those signals exert their effects are not fully understood. The primary cilium has been identified as a mechano-sensor in several cell types, including renal epithelial cells and endothelium, and accumulating evidence connects it to mechano-transduction in chondrocytes. In the growth plate, the primary cilium is involved in several regulatory pathways, such as the non-canonical Wnt and Indian Hedgehog. Moreover, it mediates cell shape, orientation, growth, and differentiation in the growth plate. In this work, we show that mechanical load enhances ciliogenesis in the growth plate. This leads to alterations in the expression and localization of key members of the Ihh-PTHrP loop resulting in decreased proliferation and an abnormal switch from proliferation to differentiation, together with abnormal chondrocyte morphology and organization. Moreover, we use the chondrogenic cell line ATDC5, a model for growth-plate chondrocytes, to understand the mechanisms mediating the participation of the primary cilium, and in particular KIF3A, in the cell’s response to mechanical stimulation. We show that this key component of the cilium mediates gene expression in response to mechanical stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Atsumi T, Miwa Y, Kimata K, Ikawa Y (1990) A chondrogenic cell line derived from a differentiating culture of AT805 teratocarcinoma cells. Cell Differ Dev 30(2):109–116

    Article  CAS  PubMed  Google Scholar 

  2. Berbari NF, O’Connor AK, Haycraft CJ, Yoder BK (2009) The primary cilium as a complex signaling center. Curr Biol 19(13):R526–R535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Berbari NF, Sharma N, Malarkey EB, Pieczynski JN, Boddu R, Gaertig J, Guay-Woodford L, Yoder BK (2013) Microtubule modifications and stability are altered by cilia perturbation and in cystic kidney disease. Cytoskeleton (Hoboken) 70(1):24–31

    Article  CAS  Google Scholar 

  4. Blain EJ (2009) Involvement of the cytoskeletal elements in articular cartilage homeostasis and pathology. Int J Exp Pathol 90(1):1–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Challa TD, Rais Y, Ornan EM (2010) Effect of adiponectin on ATDC5 proliferation, differentiation and signaling pathways. Mol Cell Endocrinol 323(2):282–291

    Article  CAS  PubMed  Google Scholar 

  6. Chen JK, Taipale J, Young KE, Beachy PA (2002) Small molecule modulation of smoothened activity. Proc Natl Acad Sci USA 99(22):14071–14076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Dagoneau N, Goulet M, Genevieve D, Sznajer Y, Martinovic J, Smithson S, Huber C, Baujat G, Flori E, Tecco L, Cavalcanti D, Delezoide AL, Serre V, Le Merrer M, Munnich A, Cormier-Daire V (2009) DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III. Am J Hum Genet 84(5):706–711

  8. de Andrea CE, Wiweger M, Prins F, Bovee JV, Romeo S, Hogendoorn PC (2010) Primary cilia organization reflects polarity in the growth plate and implies loss of polarity and mosaicism in osteochondroma. Lab Invest 90(7):1091–1101

    Article  PubMed  Google Scholar 

  9. Ehlen HW, Buelens LA, Vortkamp A (2006) Hedgehog signaling in skeletal development. Birth Defects Res C Embryo Today 78(3):267–279

    Article  CAS  PubMed  Google Scholar 

  10. Epari DR, Taylor WR, Heller MO, Duda GN (2006) Mechanical conditions in the initial phase of bone healing. Clin Biomech (Bristol, Avon) 21(6):646–655

    Article  Google Scholar 

  11. Goodship AE, Lanyon LE, McFie H (1979) Functional adaptation of bone to increased stress: an experimental study. J Bone Joint Surg Am 61(4):539–546

    CAS  PubMed  Google Scholar 

  12. Guilak F, Alexopoulos LG, Upton ML, Youn I, Choi JB, Cao L, Setton LA, Haider MA (2006) The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann N Y Acad Sci 1068:498–512

    Article  CAS  PubMed  Google Scholar 

  13. Haraguchi K, Hayashi T, Jimbo T, Yamamoto T, Akiyama T (2006) Role of the kinesin-2 family protein, KIF3, during mitosis. J Biol Chem 281(7):4094–4099

    Article  CAS  PubMed  Google Scholar 

  14. Hasky-Negev M, Simsa S, Tong A, Genina O, Monsonego Ornan E (2008) Expression of matrix metalloproteinases during vascularization and ossification of normal and impaired avian growth plate. J Anim Sci 86(6):1306–1315

    Article  CAS  PubMed  Google Scholar 

  15. Haycraft CJ, Zhang Q, Song B, Jackson WS, Detloff PJ, Serra R, Yoder BK (2007) Intraflagellar transport is essential for endochondral bone formation. Development 134(2):307–316

    Article  CAS  PubMed  Google Scholar 

  16. Haycraft CJ, Serra R (2008) Cilia involvement in patterning and maintenance of the skeleton. Curr Top Dev Biol 85:303–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hirokawa N (2000) Determination of left-right asymmetry: role of Cilia and KIF3 motor proteins. News Physiol Sci 15:56

    PubMed  Google Scholar 

  18. Hoey DA, Tormey S, Ramcharan S, O'Brien FJ, Jacobs CR (2012) Primary cilia-mediated mechanotransduction in human mesenchymal stem cells. Stem Cells 30(11):2561–2570

    Article  PubMed Central  PubMed  Google Scholar 

  19. Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475(7356):316–323

    Article  CAS  PubMed  Google Scholar 

  20. Idelevich A, Rais Y, Monsonego-Ornan E (2012) Bone Gla protein increases HIF-1alpha-dependent glucose metabolism and induces cartilage and vascular calcification. Arterioscler Thromb Vasc Biol 31(9):e55–e71

    Article  Google Scholar 

  21. Jacobs CR, Temiyasathit S, Castillo AB (2010) Osteocyte mechanobiology and pericellular mechanics. Annu Rev Biomed Eng 12:369–400

    Article  CAS  PubMed  Google Scholar 

  22. Jensen CG, Poole CA, McGlashan SR, Marko M, Issa ZI, Vujcich KV, Bowser SS (2004) Ultrastructural, tomographic and confocal imaging of the chondrocyte primary cilium in situ. Cell Biol Int 28(2):101–110

    Article  CAS  PubMed  Google Scholar 

  23. Karp SJ, Schipani E, St-Jacques B, Hunzelman J, Kronenberg H, McMahon AP (2000) Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways. Development 127(3):543–548

    CAS  PubMed  Google Scholar 

  24. Kim J, Kato M, Beachy PA (2009) Gli2 trafficking links Hedgehog-dependent activation of Smoothened in the primary cilium to transcriptional activation in the nucleus. Proc Natl Acad Sci USA 106(51):21666–21671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kinumatsu T, Shibukawa Y, Yasuda T, Nagayama M, Yamada S, Serra R, Pacifici M, Koyama E (2011) TMJ development and growth require primary cilia function. J Dent Res 90(8):988–994

    Article  CAS  PubMed  Google Scholar 

  26. Kolpakova-Hart E, Nicolae C, Zhou J, Olsen BR (2008) Col2-Cre recombinase is co-expressed with endogenous type II collagen in embryonic renal epithelium and drives development of polycystic kidney disease following inactivation of ciliary genes. Matrix Biol 27(6):505–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kottgen M, Buchholz B, Garcia-Gonzalez MA, Kotsis F, Fu X, Doerken M, Boehlke C, Steffl D, Tauber R, Wegierski T, Nitschke R, Suzuki M, Kramer-Zucker A, Germino GG, Watnick T, Prenen J, Nilius B, Kuehn EW, Walz G (2008) TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182(3):437–447

    Article  PubMed Central  PubMed  Google Scholar 

  28. Koyama E, Young B, Nagayama M, Shibukawa Y, Enomoto-Iwamoto M, Iwamoto M, Maeda Y, Lanske B, Song B, Serra R, Pacifici M (2007) Conditional Kif3a ablation causes abnormal hedgehog signaling topography, growth plate dysfunction, and excessive bone and cartilage formation during mouse skeletogenesis. Development 134(11):2159–2169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Li S, Duance VC, Blain EJ (2008) Zonal variations in cytoskeletal element organization, mRNA and protein expression in the intervertebral disc. J Anat 213(6):725–732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Li J, Zhao Z, Yang J, Liu J, Wang J, Li X, Liu Y (2009) p38 MAPK mediated in compressive stressinduced chondrogenesis of rat bone marrow MSCs in 3D alginate scaffolds. J Cell Physiol 221(3):609–617

    Article  CAS  PubMed  Google Scholar 

  31. Lin F, Hiesberger T, Cordes K, Sinclair AM, Goldstein LS, Somlo S, Igarashi P (2003) Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci USA 100(9):5286–5291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Liu A, Wang B, Niswander LA (2005) Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 132(13):3103–3111

    Article  CAS  PubMed  Google Scholar 

  33. Luo W, Xiong W, Zhou J, Fang Z, Chen W, Fan Y, Li F (2011) Laminar shear stress delivers cell cycle arrest and anti-apoptosis to mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai) 43(3):210–216

    Article  CAS  Google Scholar 

  34. Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR (2007) Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci USA 104 (33):13325–13330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Marszalek JR, Ruiz-Lozano P, Roberts E, Chien KR, Goldstein LS (1999) Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc Natl Acad Sci USA 96(9):5043–5048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. McGlashan SR, Jensen CG, Poole CA (2006) Localization of extracellular matrix receptors on the chondrocyte primary cilium. J Histochem Cytochem 54(9):1005–1014

    Article  CAS  PubMed  Google Scholar 

  37. McGlashan SR, Haycraft CJ, Jensen CG, Yoder BK, Poole CA (2007) Articular cartilage and growth plate defects are associated with chondrocyte cytoskeletal abnormalities in Tg737orpk mice lacking the primary cilia protein polaris. Matrix Biol 26(4):234–246

    Article  CAS  PubMed  Google Scholar 

  38. McGlashan SR, Knight MM, Chowdhury TT, Joshi P, Jensen CG, Kennedy S, Poole CA (2010) Mechanical loading modulates chondrocyte primary cilia incidence and length. Cell Biol Inter 34(5):441–446

    Article  Google Scholar 

  39. Meier-Vismara E, Walker N, Vogel A (1979) Single cilia in the articular cartilage of the cat. Exp Cell Biol 47(3):161–171

    CAS  PubMed  Google Scholar 

  40. Muhammad H, Rais Y, Miosge N, Ornan EM (2012) The primary cilium as a dual sensor of mechanochemical signals in chondrocytes. Cell Mol Life Sci 69(13):2101–2107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Murcia NS, Richards WG, Yoder BK, Mucenski ML, Dunlap JR, Woychik RP (2000) The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination. Development 127(11):2347–2355

    CAS  PubMed  Google Scholar 

  42. Nauli SM, Zhou J (2004) Polycystins and mechanosensation in renal and nodal cilia. BioEssays 26(8):844–856

    Article  CAS  PubMed  Google Scholar 

  43. Ng TC, Chiu KW, Rabie AB, Hagg U (2006) Repeated mechanical loading enhances the expression of Indian hedgehog in condylar cartilage. Front Biosci 11:943–948

    Article  CAS  PubMed  Google Scholar 

  44. Olsen B (2005) Nearly all cells in vertebrates and many cells in invertebrates contain primary cilia. Matrix Biol 24(7):449–450

    Article  CAS  PubMed  Google Scholar 

  45. Ott CE, Bauer S, Manke T, Ahrens S, Rodelsperger C, Grunhagen J, Kornak U, Duda G, Mundlos S, Robinson PN (2009) Promiscuous and depolarization-induced immediate-early response genes are induced by mechanical strain of osteoblasts. J Bone Miner Res 24(7):1247–1262

    Article  CAS  PubMed  Google Scholar 

  46. Papachristou DJ, Papachroni KK, Basdra EK, Papavassiliou AG (2009) Signaling networks and transcription factors regulating mechanotransduction in bone. BioEssays 31(7):794–804

    Article  CAS  PubMed  Google Scholar 

  47. Pazour GJ, Witman GB (2003) The vertebrate primary cilium is a sensory organelle. Curr Opin Cell Biol 15(1):105–110

    Article  CAS  PubMed  Google Scholar 

  48. Pearson SJ, Cobbold M, Harridge SD (2004) Power output of the lower limb during variable inertial loading: a comparison between methods using single and repeated contractions. Eur J Appl Physiol 92(1-2):176–181

    Article  CAS  PubMed  Google Scholar 

  49. Pedersen LB, Veland IR, Schroder JM, Christensen ST (2008) Assembly of primary cilia. Dev Dyn 237(8):1993–2006

    Article  CAS  PubMed  Google Scholar 

  50. Plotnikova OV, Golemis EA, Pugacheva EN (2008) Cell cycle-dependent ciliogenesis and cancer. Cancer Res 68(7):2058–2061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Poole CA, Flint MH, Beaumont BW (1984) Morphological and functional interrelationships of articular cartilage matrices. J Anat 138(Pt 1):113–138

    PubMed Central  PubMed  Google Scholar 

  52. Poole CA, Flint MH, Beaumont BW (1985) Analysis of the morphology and function of primary cilia in connective tissues: a cellular cybernetic probe? Cell Motil 5(3):175–193

    Article  CAS  PubMed  Google Scholar 

  53. Poole CA, Zhang ZJ, Ross JM (2001) The differential distribution of acetylated and detyrosinated alpha-tubulin in the microtubular cytoskeleton and primary cilia of hyaline cartilage chondrocytes. J Anat 199 (Pt4):393–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Praetorius HA, Leipziger J (2012) Primary cilium-dependent sensing of urinary flow and paracrine purinergic signaling. Semin Cell Dev Biol 24(1):3–10

    Article  PubMed  Google Scholar 

  55. Praetorius HA, Spring KR (2003) The renal cell primary cilium functions as a flow sensor. Curr Opin Nephrol Hypertens 12(5):517–520

    Article  PubMed  Google Scholar 

  56. Reich A, Jaffe N, Tong A, Lavelin I, Genina O, Pines M, Sklan D, Nussinovitch A, Monsonego-Ornan E (2005) Weight loading young chicks inhibits bone elongation and promotes growth plate ossification and vascularization. J Appl Physiol 98(6):2381–2389

    Article  CAS  PubMed  Google Scholar 

  57. Reich A, Sharir A, Zelzer E, Hacker L, Monsonego-Ornan E, Shahar R (2008) The effect of weight loading and subsequent release from loading on the postnatal skeleton. Bone 43(4):766–774

    Article  PubMed  Google Scholar 

  58. Reich A, Maziel SS, Ashkenazi Z, Ornan EM (2010) Involvement of matrix metalloproteinases in the growth plate response to physiological mechanical load. J Appl Physiol 108(1):172–180

    Article  CAS  PubMed  Google Scholar 

  59. Rieder CL, Jensen CG, Jensen LC (1979) The resorption of primary cilia during mitosis in a vertebrate (PtK1) cell line. J Ultrastruct Res 68(2):173–185

    Article  CAS  PubMed  Google Scholar 

  60. Robert A, Margall-Ducos G, Guidotti JE, Bregerie O, Celati C, Brechot C, Desdouets C (2007) The intraflagellar transport component IFT88/polaris is a centrosomal protein regulating G1-S transition in non-ciliated cells. J Cell Sci 120(Pt 4):628–637

    Article  CAS  PubMed  Google Scholar 

  61. Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66(3):397–402

    CAS  PubMed  Google Scholar 

  62. Ruhlen R, Marberry K (2014) The chondrocyte primary cilium. Osteoarthr Cartil S1063–4584(14):01090–01095

    Google Scholar 

  63. Sanz-Ramos P, Mora G, Ripalda P, Vicente-Pascual M, Izal-Azcarate I (2012) Identification of signalling pathways triggered by changes in the mechanical environment in rat chondrocytes. Osteoarthr Cartil 20(8):931–939

    Article  CAS  PubMed  Google Scholar 

  64. Scholey JM, Anderson KV (2006) Intraflagellar transport and cilium-based signaling. Cell 125(3):439–442

    Article  CAS  PubMed  Google Scholar 

  65. Schulz RM, Bader A (2007) Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J 36(4-5):539–568

    Article  CAS  PubMed  Google Scholar 

  66. Seeger-Nukpezah T, Golemis EA (2012) The extracellular matrix and ciliary signaling. Curr Opin Cell Biol 24(5):652–661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Shao YY, Wang L, Welter JF, Ballock RT (2012) Primary cilia modulate Ihh signal transduction in response to hydrostatic loading of growth plate chondrocytes. Bone 50(1):79–84

    Article  CAS  PubMed  Google Scholar 

  68. Sharma N, Kosan ZA, Stallworth JE, Berbari NF, Yoder BK (2011) Soluble levels of cytosolic tubulin regulate ciliary length control. Mol Biol Cell 22(6):806–816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Simsa-Maziel S, Monsonego-Ornan E (2012) Interleukin-1beta promotes proliferation and inhibits differentiation of chondrocytes through a mechanism involving down-regulation of FGFR-3 and p21. Endocrinology 153(5):2296–2310

    Article  CAS  PubMed  Google Scholar 

  70. Simsa S, Ornan EM (2007) Endochondral ossification process of the turkey (Meleagris gallopavo) during embryonic and juvenile development. Poult Sci 86(3):565–571

    Article  CAS  PubMed  Google Scholar 

  71. Sloboda RD, Rosenbaum JL (2007) Making sense of cilia and flagella. J Cell Biol 179(4):575–582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Song B, Haycraft CJ, Seo HS, Yoder BK, Serra R (2007) Development of the post-natal growth plate requires intraflagellar transport proteins. Dev Biol 305(1):202–216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13(16):2072–2086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Tanaka SM, Sun HB, Roeder RK, Burr DB, Turner CH, Yokota H (2005) Osteoblast responses one hour after load-induced fluid flow in a three-dimensional porous matrix. Calcif Tissue Int 76(4):261–271

    Article  CAS  PubMed  Google Scholar 

  75. Tang GH, Rabie AB, Hagg U (2004) Indian hedgehog: a mechanotransduction mediator in condylar cartilage. J Dent Res 83(5):434–438

    Article  CAS  PubMed  Google Scholar 

  76. Temiyasathit S, Tang WJ, Leucht P, Anderson CT, Monica SD, Castillo AB, Helms JA, Stearns T, Jacobs CR (2012) Mechanosensing by the primary cilium: deletion of Kif3A reduces bone formation due to loading. PLoS One 7(3):e33368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Terai K, Takano-Yamamoto T, Ohba Y, Hiura K, Sugimoto M, Sato M, Kawahata H, Inaguma N, Kitamura Y, Nomura S (1999) Role of osteopontin in bone remodeling caused by mechanical stress. J Bone Miner Res 14(6):839–849

    Article  CAS  PubMed  Google Scholar 

  78. Thompson CL, Chapple JP, Knight MM (2014) Primary cilia disassembly down-regulates mechanosensitive hedgehog signalling: a feedback mechanism controlling ADAMTS-5 expression in chondrocytes. Osteoarthr Cartil 22(3):490–498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Tong A, Reich A, Genin O, Pines M, Monsonego-Ornan E (2003) Expression of chicken 75-kDa gelatinase B-like enzyme in perivascular chondrocytes suggests its role in vascularization of the growth plate. J Bone Miner Res 18(8):1443–1452

    Article  CAS  PubMed  Google Scholar 

  80. van der Eerden BC, Karperien M, Gevers EF, Lowik CW, Wit JM (2000) Expression of Indian hedgehog, parathyroid hormone-related protein, and their receptors in the postnatal growth plate of the rat: evidence for a locally acting growth restraining feedback loop after birth. J Bone Miner Res 15(6):1045–1055

    Article  PubMed  Google Scholar 

  81. Vortkamp A (2000) The Indian hedgehog–PTHrP system in bone development. Ernst Schering Res Found Workshop 29:191–209

    CAS  PubMed  Google Scholar 

  82. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273(5275):613–622

    Article  CAS  PubMed  Google Scholar 

  83. Wann AK, Zuo N, Haycraft CJ, Jensen CG, Poole CA, McGlashan SR, Knight MM (2012) Primary cilia mediate mechanotransduction through control of ATP-induced Ca2+ signaling in compressed chondrocytes. Faseb J 26(4):1663–1671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Wheatley DN, Bowser SS (2000) Length control of primary cilia: analysis of monociliate and multiciliate PtK1 cells. Biol Cell 92(8-9):573–582

    Article  CAS  PubMed  Google Scholar 

  85. Wilsman NJ, Farnum CE, Reed-Aksamit DK (1980) Incidence and morphology of equine and murine chondrocytic cilia. Anat Rec 197(3):355–361

    Article  CAS  PubMed  Google Scholar 

  86. Wu Q, Zhang Y, Chen Q (2001) Indian hedgehog is an essential component of mechanotransduction complex to stimulate chondrocyte proliferation. J Biol Chem 276(38):35290–35296

    Article  CAS  PubMed  Google Scholar 

  87. Wu QQ, Chen Q (2000) Mechanoregulation of chondrocyte proliferation, maturation, and hypertrophy: ion-channel dependent transduction of matrix deformation signals. Exp Cell Res 256(2):383–391

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank our technician Svetlana Penn for technical assistance. This research was supported by the Israel Science Foundation (Grant No. 292/07) and by the United States–Israel Binational Science Foundation (BSF) (Grant No. 2011393).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efrat Monsonego-Ornan.

Additional information

Y. Rais and A. Reich are these authors contributed equally to the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rais, Y., Reich, A., Simsa-Maziel, S. et al. The growth plate’s response to load is partially mediated by mechano-sensing via the chondrocytic primary cilium. Cell. Mol. Life Sci. 72, 597–615 (2015). https://doi.org/10.1007/s00018-014-1690-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1690-4

Keywords

Navigation