Skip to main content

Advertisement

Log in

BAG-6, a jack of all trades in health and disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

BCL2-associated athanogene 6 (BAG-6) (also Bat-3/Scythe) was discovered as a gene product of the major histocompatibility complex class III locus. The Xenopus ortholog Scythe was first identified to act as an anti-apoptotic protein. Subsequent studies unraveled that the large BAG-6 protein contributes to a number of cellular processes, including apoptosis, gene regulation, protein synthesis, protein quality control, and protein degradation. In this context, BAG-6 acts as a multifunctional chaperone, which interacts with its target proteins for shuttling to distinct destinations. Nonetheless, as anticipated from its genomic localization, BAG-6 is involved in a variety of immunological pathways such as macrophage function and TH1 response. Most recently, BAG-6 was identified on the plasma membrane of dendritic cells and malignantly transformed cells where it serves as cellular ligand for the activating natural killer (NK) cell receptor NKp30 triggering NK cell cytotoxicity. Moreover, target cells were found to secrete soluble variants of BAG-6 and release BAG-6 on the surface of exosomes, which inhibit or activate NK cell cytotoxicity, respectively. These data suggest that the BAG-6 antigen is an important target to shape a directed immune response or to overcome tumor-immune escape strategies established by soluble BAG-6. This review summarizes the currently known functions of BAG-6, a fascinating multicompetent protein, in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Banerji J, Sands J, Strominger JL, Spies T (1990) A gene pair from the human major histocompatibility complex encodes large proline-rich proteins with multiple repeated motifs and a single ubiquitin-like domain. Proc Natl Acad Sci USA 87(6):2374–2378

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Thress K, Henzel W, Shillinglaw W, Kornbluth S (1998) Scythe: a novel reaper-binding apoptotic regulator. EMBO J 17(21):6135–6143. doi:10.1093/emboj/17.21.6135

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Thress K, Evans EK, Kornbluth S (1999) Reaper-induced dissociation of a Scythe-sequestered cytochrome c-releasing activity. EMBO J 18(20):5486–5493. doi:10.1093/emboj/18.20.5486

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Minami R, Shimada M, Yokosawa H, Kawahara H (2007) Scythe regulates apoptosis through modulating ubiquitin-mediated proteolysis of the Xenopus elongation factor XEF1AO. Biochem J 405(3):495–501. doi:10.1042/BJ20061886

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Kikukawa Y, Minami R, Shimada M, Kobayashi M, Tanaka K, Yokosawa H, Kawahara H (2005) Unique proteasome subunit Xrpn10c is a specific receptor for the antiapoptotic ubiquitin-like protein Scythe. FEBS J 272(24):6373–6386. doi:10.1111/j.1742-4658.2005.05032.x

    Article  PubMed  CAS  Google Scholar 

  6. Wu YH, Shih SF, Lin JY (2004) Ricin triggers apoptotic morphological changes through caspase-3 cleavage of BAT3. J Biol Chem 279(18):19264–19275. doi:10.1074/jbc.M307049200

    Article  PubMed  CAS  Google Scholar 

  7. Preta G, Fadeel B (2012) Scythe cleavage during Fas (APO-1)-and staurosporine-mediated apoptosis. FEBS Lett 586(6):747–752. doi:10.1016/j.febslet.2012.01.034

    Article  PubMed  CAS  Google Scholar 

  8. Desmots F, Russell HR, Michel D, McKinnon PJ (2008) Scythe regulates apoptosis-inducing factor stability during endoplasmic reticulum stress-induced apoptosis. J Biol Chem 283(6):3264–3271. doi:10.1074/jbc.M706419200

    Article  PubMed  CAS  Google Scholar 

  9. Desmots F, Russell HR, Lee Y, Boyd K, McKinnon PJ (2005) The reaper-binding protein scythe modulates apoptosis and proliferation during mammalian development. Mol Cell Biol 25(23):10329–10337. doi:10.1128/MCB.25.23.10329-10337.2005

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Sasaki T, Gan EC, Wakeham A, Kornbluth S, Mak TW, Okada H (2007) HLA-B-associated transcript 3 (Bat3)/Scythe is essential for p300-mediated acetylation of p53. Genes Dev 21(7):848–861. doi:10.1101/gad.1534107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Manchen ST, Hubberstey AV (2001) Human Scythe contains a functional nuclear localization sequence and remains in the nucleus during staurosporine-induced apoptosis. Biochem Biophys Res Commun 287(5):1075–1082. doi:10.1006/bbrc.2001.5701

    Article  PubMed  CAS  Google Scholar 

  12. Wu W, Song W, Li S, Ouyang S, Fok KL, Diao R, Miao S, Chan HC, Wang L (2012) Regulation of apoptosis by Bat3-enhanced YWK-II/APLP2 protein stability. J Cell Sci 125(Pt 18):4219–4229. doi:10.1242/jcs.086553

    Article  PubMed  CAS  Google Scholar 

  13. Krenciute G, Liu S, Yucer N, Shi Y, Ortiz P, Liu Q, Kim BJ, Odejimi AO, Leng M, Qin J, Wang Y (2013) Nuclear BAG6-UBL4A-GET4 complex mediates DNA damage signaling and cell death. J Biol Chem 288(28):20547–20557. doi:10.1074/jbc.M112.443416

    Article  PubMed  CAS  Google Scholar 

  14. Nguyen P, Bar-Sela G, Sun L, Bisht KS, Cui H, Kohn E, Feinberg AP, Gius D (2008) BAT3 and SET1A form a complex with CTCFL/BORIS to modulate H3K4 histone dimethylation and gene expression. Mol Cell Biol 28(21):6720–6729. doi:10.1128/MCB.00568-08

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Wakeman TP, Wang Q, Feng J, Wang XF (2012) Bat3 facilitates H3K79 dimethylation by DOT1L and promotes DNA damage-induced 53BP1 foci at G1/G2 cell-cycle phases. EMBO J 31(9):2169–2181. doi:10.1038/emboj.2012.50

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Kamper N, Kessler J, Temme S, Wegscheid C, Winkler J, Koch N (2012) A novel BAT3 sequence generated by alternative RNA splicing of exon 11B displays cell type-specific expression and impacts on subcellular localization. PLoS One 7(4):e35972. doi:10.1371/journal.pone.0035972

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Wang Q, Liu Y, Soetandyo N, Baek K, Hegde R, Ye Y (2011) A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. Mol Cell 42(6):758–770. doi:10.1016/j.molcel.2011.05.010

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Pogge von Strandmann E, Simhadri VR, von Tresckow B, Sasse S, Reiners KS, Hansen HP, Rothe A, Boll B, Simhadri VL, Borchmann P, McKinnon PJ, Hallek M, Engert A (2007) Human leukocyte antigen-B-associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells. Immunity 27(6):965–974. doi:10.1016/j.immuni.2007.10.010

    Article  PubMed  CAS  Google Scholar 

  19. Simhadri VR, Reiners KS, Hansen HP, Topolar D, Simhadri VL, Nohroudi K, Kufer TA, Engert A, Pogge von Strandmann E (2008) Dendritic cells release HLA-B-associated transcript-3 positive exosomes to regulate natural killer function. PLoS One 3(10):e3377. doi:10.1371/journal.pone.0003377

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Koch J, Steinle A, Watzl C, Mandelboim O (2013) Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. Trends Immunol 34(4):182–191. doi:10.1016/j.it.2013.01.003

    Article  PubMed  CAS  Google Scholar 

  21. Thress K, Song J, Morimoto RI, Kornbluth S (2001) Reversible inhibition of Hsp70 chaperone function by Scythe and Reaper. EMBO J 20(5):1033–1041. doi:10.1093/emboj/20.5.1033

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Corduan A, Lecomte S, Martin C, Michel D, Desmots F (2009) Sequential interplay between BAG6 and HSP70 upon heat shock. CMLS 66(11–12):1998–2004. doi:10.1007/s00018-009-9198-z

    Article  PubMed  CAS  Google Scholar 

  23. Sasaki T, Marcon E, McQuire T, Arai Y, Moens PB, Okada H (2008) Bat3 deficiency accelerates the degradation of Hsp70-2/HspA2 during spermatogenesis. J Cell Biol 182(3):449–458. doi:10.1083/jcb.200802113

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Takayama S, Reed JC (2001) Molecular chaperone targeting and regulation by BAG family proteins. Nat Cell Biol 3(10):E237–E241. doi:10.1038/ncb1001-e237

    Article  PubMed  CAS  Google Scholar 

  25. Doong H, Vrailas A, Kohn EC (2002) What’s in the ‘BAG’?—a functional domain analysis of the BAG-family proteins. Cancer Lett 188(1–2):25–32

    Article  PubMed  CAS  Google Scholar 

  26. Naishiro Y, Adachi M, Okuda H, Yawata A, Mitaka T, Takayama S, Reed JC, Hinoda Y, Imai K (1999) BAG-1 accelerates cell motility of human gastric cancer cells. Oncogene 18(21):3244–3251. doi:10.1038/sj.onc.1202661

    Article  PubMed  CAS  Google Scholar 

  27. Rosati A, Graziano V, De Laurenzi V, Pascale M, Turco MC (2011) BAG3: a multifaceted protein that regulates major cell pathways. Cell Death Dis 2:e141. doi:10.1038/cddis.2011.24

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Liao Q, Ozawa F, Friess H, Zimmermann A, Takayama S, Reed JC, Kleeff J, Buchler MW (2001) The anti-apoptotic protein BAG-3 is overexpressed in pancreatic cancer and induced by heat stress in pancreatic cancer cell lines. FEBS Lett 503(2–3):151–157

    Article  PubMed  CAS  Google Scholar 

  29. Tang SC, Shehata N, Chernenko G, Khalifa M, Wang X (1999) Expression of BAG-1 in invasive breast carcinomas. J Clin Oncol 17(6):1710–1719

    PubMed  CAS  Google Scholar 

  30. Rabu C, Schmid V, Schwappach B, High S (2009) Biogenesis of tail-anchored proteins: the beginning for the end? J Cell Sci 122(Pt 20):3605–3612. doi:10.1242/jcs.041210

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Stefanovic S, Hegde RS (2007) Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128(6):1147–1159. doi:10.1016/j.cell.2007.01.036

    Article  PubMed  CAS  Google Scholar 

  32. Schuldiner M, Metz J, Schmid V, Denic V, Rakwalska M, Schmitt HD, Schwappach B, Weissman JS (2008) The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134(4):634–645. doi:10.1016/j.cell.2008.06.025

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Chang YW, Chuang YC, Ho YC, Cheng MY, Sun YJ, Hsiao CD, Wang C (2010) Crystal structure of Get4-Get5 complex and its interactions with Sgt2, Get3, and Ydj1. J Biol Chem 285(13):9962–9970. doi:10.1074/jbc.M109.087098

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Mariappan M, Mateja A, Dobosz M, Bove E, Hegde RS, Keenan RJ (2011) The mechanism of membrane-associated steps in tail-anchored protein insertion. Nature 477(7362):61–66. doi:10.1038/nature10362

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Mariappan M, Li X, Stefanovic S, Sharma A, Mateja A, Keenan RJ, Hegde RS (2010) A ribosome-associating factor chaperones tail-anchored membrane proteins. Nature 466(7310):1120–1124. doi:10.1038/nature09296

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Leznicki P, Clancy A, Schwappach B, High S (2010) Bat3 promotes the membrane integration of tail-anchored proteins. J Cell Sci 123(Pt 13):2170–2178. doi:10.1242/jcs.066738

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Xu Y, Cai M, Yang Y, Huang L, Ye Y (2012) SGTA recognizes a noncanonical ubiquitin-like domain in the Bag6-Ubl4A-Trc35 complex to promote endoplasmic reticulum-associated degradation. Cell Rep 2(6):1633–1644. doi:10.1016/j.celrep.2012.11.010

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Winnefeld M, Grewenig A, Schnolzer M, Spring H, Knoch TA, Gan EC, Rommelaere J, Cziepluch C (2006) Human SGT interacts with Bag-6/Bat-3/Scythe and cells with reduced levels of either protein display persistence of few misaligned chromosomes and mitotic arrest. Exp Cell Res 312(13):2500–2514. doi:10.1016/j.yexcr.2006.04.020

    Article  PubMed  CAS  Google Scholar 

  39. Minami R, Hayakawa A, Kagawa H, Yanagi Y, Yokosawa H, Kawahara H (2010) BAG-6 is essential for selective elimination of defective proteasomal substrates. J Cell Biol 190(4):637–650. doi:10.1083/jcb.200908092

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Metzger MB, Maurer MJ, Dancy BM, Michaelis S (2008) Degradation of a cytosolic protein requires endoplasmic reticulum-associated degradation machinery. J Biol Chem 283(47):32302–32316. doi:10.1074/jbc.M806424200

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Reits EA, Vos JC, Gromme M, Neefjes J (2000) The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 404(6779):774–778. doi:10.1038/35008103

    Article  PubMed  CAS  Google Scholar 

  42. Khan S, de Giuli R, Schmidtke G, Bruns M, Buchmeier M, van den Broek M, Groettrup M (2001) Cutting edge: neosynthesis is required for the presentation of a T cell epitope from a long-lived viral protein. J Immunol 167(9):4801–4804

    Article  PubMed  CAS  Google Scholar 

  43. Koch J, Tampe R (2006) The macromolecular peptide-loading complex in MHC class I-dependent antigen presentation. CMLS 63(6):653–662. doi:10.1007/s00018-005-5462-z

    Article  PubMed  CAS  Google Scholar 

  44. Hessa T, Sharma A, Mariappan M, Eshleman HD, Gutierrez E, Hegde RS (2011) Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 475(7356):394–397. doi:10.1038/nature10181

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Hirsch C, Gauss R, Horn SC, Neuber O, Sommer T (2009) The ubiquitylation machinery of the endoplasmic reticulum. Nature 458(7237):453–460. doi:10.1038/nature07962

    Article  PubMed  CAS  Google Scholar 

  46. Claessen JH, Ploegh HL (2011) BAT3 guides misfolded glycoproteins out of the endoplasmic reticulum. PLoS One 6(12):e28542. doi:10.1371/journal.pone.0028542

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Kwak JH, Kim SI, Kim JK, Choi ME (2008) BAT3 interacts with transforming growth factor-beta (TGF-beta) receptors and enhances TGF-beta1-induced type I collagen expression in mesangial cells. J Biol Chem 283(28):19816–19825. doi:10.1074/jbc.M802285200

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Ensminger AW, Isberg RR (2010) E3 ubiquitin ligase activity and targeting of BAT3 by multiple Legionella pneumophila translocated substrates. Infect Immun 78(9):3905–3919. doi:10.1128/IAI.00344-10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Wang Y, Broderick P, Webb E, Wu X, Vijayakrishnan J, Matakidou A, Qureshi M, Dong Q, Gu X, Chen WV, Spitz MR, Eisen T, Amos CI, Houlston RS (2008) Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat Genet 40(12):1407–1409. doi:10.1038/ng.273

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Degli-Esposti MA, Abraham LJ, McCann V, Spies T, Christiansen FT, Dawkins RL (1992) Ancestral haplotypes reveal the role of the central MHC in the immunogenetics of IDDM. Immunogenetics 36(6):345–356

    Article  PubMed  CAS  Google Scholar 

  51. Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D, Kay DM, Doheny KF, Paschall J, Pugh E, Kusel VI, Collura R, Roberts J, Griffith A, Samii A, Scott WK, Nutt J, Factor SA, Payami H (2010) Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet 42(9):781–785. doi:10.1038/ng.642

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Hsieh YY, Lin YJ, Chang CC, Chen DY, Hsu CM, Wang YK, Hsu KH, Tsai FJ (2010) Human lymphocyte antigen B-associated transcript 2, 3, and 5 polymorphisms and haplotypes are associated with susceptibility of Kawasaki disease and coronary artery aneurysm. J Clin Lab Anal 24(4):262–268. doi:10.1002/jcla.20409

    Article  PubMed  CAS  Google Scholar 

  53. Vandiedonck C, Beaurain G, Giraud M, Hue-Beauvais C, Eymard B, Tranchant C, Gajdos P, Dausset J, Garchon HJ (2004) Pleiotropic effects of the 8.1 HLA haplotype in patients with autoimmune myasthenia gravis and thymus hyperplasia. Proc Natl Acad Sci USA 101(43):15464–15469. doi:10.1073/pnas.0406756101

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Harney SM, Vilarino-Guell C, Adamopoulos IE, Sims AM, Lawrence RW, Cardon LR, Newton JL, Meisel C, Pointon JJ, Darke C, Athanasou N, Wordsworth BP, Brown MA (2008) Fine mapping of the MHC Class III region demonstrates association of AIF1 and rheumatoid arthritis. Rheumatology 47(12):1761–1767. doi:10.1093/rheumatology/ken376

    Article  PubMed  CAS  Google Scholar 

  55. Ivanov I, Lo KC, Hawthorn L, Cowell JK, Ionov Y (2007) Identifying candidate colon cancer tumor suppressor genes using inhibition of nonsense-mediated mRNA decay in colon cancer cells. Oncogene 26(20):2873–2884. doi:10.1038/sj.onc.1210098

    Article  PubMed  CAS  Google Scholar 

  56. Rangachari M, Zhu C, Sakuishi K, Xiao S, Karman J, Chen A, Angin M, Wakeham A, Greenfield EA, Sobel RA, Okada H, McKinnon PJ, Mak TW, Addo MM, Anderson AC, Kuchroo VK (2012) Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat Med 18(9):1394–1400. doi:10.1038/nm.2871

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Kamper N, Franken S, Temme S, Koch S, Bieber T, Koch N (2012) gamma-Interferon-regulated chaperone governs human lymphocyte antigen class II expression. FASEB J 26(1):104–116. doi:10.1096/fj.11-189670

    Article  PubMed  CAS  Google Scholar 

  58. Grover A, Izzo AA (2012) BAT3 regulates mycobacterium tuberculosis protein ESAT-6-mediated apoptosis of macrophages. PLoS One 7(7):e40836. doi:10.1371/journal.pone.0040836

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, Zheng XX, Strom TB, Kuchroo VK (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6(12):1245–1252. doi:10.1038/ni1271

    Article  PubMed  CAS  Google Scholar 

  60. Pai RK, Askew D, Boom WH, Harding CV (2002) Regulation of class II MHC expression in APCs: roles of types I, III, and IV class II transactivator. J Immunol 169(3):1326–1333

    Article  PubMed  CAS  Google Scholar 

  61. Derrick SC, Morris SL (2007) The ESAT6 protein of Mycobacterium tuberculosis induces apoptosis of macrophages by activating caspase expression. Cell Microbiol 9(6):1547–1555. doi:10.1111/j.1462-5822.2007.00892.x

    Article  PubMed  CAS  Google Scholar 

  62. Fadok VA, de Cathelineau A, Daleke DL, Henson PM, Bratton DL (2001) Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J Biol Chem 276(2):1071–1077. doi:10.1074/jbc.M003649200

    Article  PubMed  CAS  Google Scholar 

  63. Kagan VE, Gleiss B, Tyurina YY, Tyurin VA, Elenstrom-Magnusson C, Liu SX, Serinkan FB, Arroyo A, Chandra J, Orrenius S, Fadeel B (2002) A role for oxidative stress in apoptosis: oxidation and externalization of phosphatidylserine is required for macrophage clearance of cells undergoing Fas-mediated apoptosis. J Immunol 169(1):487–499

    Article  PubMed  CAS  Google Scholar 

  64. Preta G, Fadeel B (2012) AIF and Scythe (Bat3) regulate phosphatidylserine exposure and macrophage clearance of cells undergoing Fas (APO-1)-mediated apoptosis. PLoS One 7(10):e47328. doi:10.1371/journal.pone.0047328

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Ferlazzo G, Morandi B, D’Agostino A, Meazza R, Melioli G, Moretta A, Moretta L (2003) The interaction between NK cells and dendritic cells in bacterial infections results in rapid induction of NK cell activation and in the lysis of uninfected dendritic cells. Eur J Immunol 33(2):306–313. doi:10.1002/immu.200310004

    Article  PubMed  CAS  Google Scholar 

  66. Groth A, Kloss S, von Strandmann EP, Koehl U, Koch J (2011) Mechanisms of tumor and viral immune escape from natural killer cell-mediated surveillance. J Innate Immun 3(4):344–354. doi:10.1159/000327014

    Article  PubMed  CAS  Google Scholar 

  67. Reiners KS, Topolar D, Henke A, Simhadri VR, Kessler J, Sauer M, Bessler M, Hansen HP, Tawadros S, Herling M, Kronke M, Hallek M, Pogge von Strandmann E (2013) Soluble ligands for NK cell receptors promote evasion of chronic lymphocytic leukemia cells from NK cell anti-tumor activity. Blood 121(18):3658–3665. doi:10.1182/blood-2013-01-476606

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Reiners KS, Kessler J, Sauer M, Rothe A, Hansen HP, Reusch U, Hucke C, Kohl U, Durkop H, Engert A, von Strandmann EP (2013) Rescue of impaired NK cell activity in Hodgkin lymphoma with bispecific antibodies in vitro and in patients. Mol Ther 21(4):895–903. doi:10.1038/mt.2013.14

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Fernandez-Messina L, Ashiru O, Boutet P, Aguera-Gonzalez S, Skepper JN, Reyburn HT, Vales-Gomez M (2010) Differential mechanisms of shedding of the glycosylphosphatidylinositol (GPI)-anchored NKG2D ligands. J Biol Chem 285(12):8543–8551. doi:10.1074/jbc.M109.045906

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Ashiru O, Boutet P, Fernandez-Messina L, Aguera-Gonzalez S, Skepper JN, Vales-Gomez M, Reyburn HT (2010) Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res 70(2):481–489. doi:10.1158/0008-5472.CAN-09-1688

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247. doi:10.1126/science.1153124

    Article  PubMed  CAS  Google Scholar 

  72. Ullrich E, Koch J, Cerwenka A, Steinle A (2013) New prospects on the NKG2D/NKG2D-ligand system for oncology. Oncoimmunology 2(10):e26097. doi:10.4161/onci.26097

  73. Binici J, Hartmann J, Herrmann J, Schreiber C, Beyer S, Guler G, Vogel V, Tumulka F, Abele R, Mantele W, Koch J (2013) A soluble fragment of the tumor antigen BCL2-associated athanogene 6 (BAG-6) is essential and sufficient for inhibition of NKp30-dependent cytotoxicity of natural killer cells. J Biol Chem. doi:10.1074/jbc.M113.483602

    PubMed  Google Scholar 

  74. Xu Y, Liu Y, Lee JG, Ye Y (2013) A ubiquitin-like domain recruits an oligomeric chaperone to a retrotranslocation complex in endoplasmic reticulum-associated degradation. J Biol Chem 288(25):18068–18076. doi:10.1074/jbc.M112.449199

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Adelheid Cerwenka for helpful discussions and critical reading of the manuscript. The laboratory of J.K. is supported by institutional funds of the Georg-Speyer-Haus and by grants from LOEWE Center for Cell and Gene Therapy Frankfurt funded by: Hessisches Ministerium für Wissenschaft und Kunst (HMWK) funding reference number: III L 4- 518/17.004 (2010) and the Wilhelm-Sander Stiftung (2010.104.1). The Georg-Speyer-Haus is funded jointly by the German Federal Ministry of Health (BMG) and the Ministry of Higher Education, Research and the Arts of the State of Hessen (HMWK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Koch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binici, J., Koch, J. BAG-6, a jack of all trades in health and disease. Cell. Mol. Life Sci. 71, 1829–1837 (2014). https://doi.org/10.1007/s00018-013-1522-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1522-y

Keywords

Navigation