Skip to main content

Advertisement

Log in

Molecular and engineering approaches to regenerate and repair teeth in mammals

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Continuous replacement of teeth throughout the lifespan of an individual is possibly basal for most of the vertebrates including fish and reptiles; however, mammals generally have a limited capacity of tooth renewal. The ability to induce cellular differentiation in adults to replace lost or damaged cells in mammals, or to tissue-engineer organs in vitro, has hence become one of the major goals of regenerative medicine. In this article, we will revisit some of the important signals and tissue interactions that regulate mammalian tooth development, and will offer a synopsis of the latest progress in tooth regeneration and repair via molecular and engineering approaches. It is hoped that this article will not only offer an overview of recent technologies in tooth regeneration and repair but will also stimulate more interdisciplinary research in this field to turn the pursuit of tooth regeneration and repair into practical reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahn Y, Sanderson BW, Klein OD, Krumlauf R (2010) Inhibition of Wnt signaling by Wise (Sostdc1) and negative feedback from Shh controls tooth number and patterning. Development 137(19):3221–3231

    Article  PubMed  CAS  Google Scholar 

  2. Jernvall J, Thesleff I (2000) Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 92(1):19–29

    Article  PubMed  CAS  Google Scholar 

  3. Jernvall J, Thesleff I (2012) Tooth shape formation and tooth renewal: evolving with the same signals. Development 139(19):3487–3497

    Article  PubMed  CAS  Google Scholar 

  4. Mojon P, Budtz-Jorgensen E, Rapin CH (1999) Relationship between oral health and nutrition in very old people. Age Ageing 28(5):463–468

    Article  PubMed  CAS  Google Scholar 

  5. Baker H (2007) Nutrition in the elderly: an overview. Geriatrics 62(7):28–31

    PubMed  Google Scholar 

  6. Henshaw MM, Calabrese JM (2008) Oral health and nutrition in the elderly. Nutr Clin Care 4(1):34–42

    Google Scholar 

  7. Caton J, Tucker AS (2009) Current knowledge of tooth development: patterning and mineralization of the murine dentition. J Anat 214(4):502–515

    Article  PubMed Central  PubMed  Google Scholar 

  8. Osborn JW (1971) The ontogeny of tooth succession in Lacerta vivipara Jacquin (1787). Proc R Soc Lond B 179(56):261–289

    Article  PubMed  CAS  Google Scholar 

  9. Westergaard B, Ferguson MWJ (1987) Development of the dentition in Alligator mississippiensis. Later development in the lower jaws of embryos, hatchlings and young juveniles. J Zool 212(2):191–222

    Article  Google Scholar 

  10. Handrigan GR, Richman JM (2010) A network of Wnt, hedgehog and BMP signaling pathways regulates tooth replacement in snakes. Dev Biol 348(1):130–141

    Article  PubMed  CAS  Google Scholar 

  11. Fraser GJ, Graham A, Smith MM (2006) Developmental and evolutionary origins of the vertebrate dentition: molecular controls for spatio-temporal organisation of tooth sites in osteichthyans. J Exp Zool B 306(3):183–203

    Article  Google Scholar 

  12. Huysseune A, Witten PE (2006) Developmental mechanisms underlying tooth patterning in continuously replacing osteichthyan dentitions. J Exp Zool B 306(3):204–215

    Article  Google Scholar 

  13. Smith MM, Fraser GJ, Chaplin N, Hobbs C, Graham A (2009) Reiterative pattern of sonic hedgehog expression in the catshark dentition reveals a phylogenetic template for jawed vertebrates. Proc R Soc Lond B 276(1660):1225–1233

    Article  CAS  Google Scholar 

  14. Vandervennet E, Huysseune A (2005) Histological description of tooth formation in adult Eretmodus cf. cyanostictus (Teleostei, Cichlidae). Arch Oral Biol 50(7):635–643

    Article  PubMed  CAS  Google Scholar 

  15. Juuri E, Jussila M, Seidel K, Holmes S, Wu P, Richman J, Heikinheimo K, Chuong CM, Arnold K, Hochedlinger K, Klein O, Michon F, Thesleff I (2013) Sox2 marks epithelial competence to generate teeth in mammals and reptiles. Development 140(7):1424–1432

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Juuri E, Saito K, Ahtiainen L, Seidel K, Tummers M, Hochedlinger K, Klein OD, Thesleff I, Michon F (2012) Sox2+ stem cells contribute to all epithelial lineages of the tooth via Sfrp5+ progenitors. Dev Cell 23(2):317–328

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Wu P, Wu X, Jiang TX, Elsey RM, Temple BL, Divers SJ, Glenn TC, Yuan K, Chen MH, Widelitz RB, Chuong CM (2013) Specialized stem cell niche enables repetitive renewal of alligator teeth. Proc Natl Acad Sci USA 110(22):E2009–E2018

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Whitlock JA, Richman JM (2013) Biology of tooth replacement in amniotes. Int J Oral Sci 5(2):66–70

    Article  PubMed Central  PubMed  Google Scholar 

  19. Handrigan GR, Leung KJ, Richman JM (2010) Identification of putative dental epithelial stem cells in a lizard with life-long tooth replacement. Development 137(21):3545–3549

    Article  PubMed  CAS  Google Scholar 

  20. Jarvinen E, Tummers M, Thesleff I (2009) The role of the dental lamina in mammalian tooth replacement. J Exp Zool B 312B(4):281–291

    Article  CAS  Google Scholar 

  21. Jarvinen E, Salazar-Ciudad I, Birchmeier W, Taketo MM, Jernvall J, Thesleff I (2006) Continuous tooth generation in mouse is induced by activated epithelial Wnt/beta-catenin signaling. Proc Natl Acad Sci USA 103(49):18627–18632

    Article  PubMed Central  PubMed  Google Scholar 

  22. Rodrigues HG, Marangoni P, Sumbera R, Tafforeau P, Wendelen W, Viriot L (2011) Continuous dental replacement in a hyper-chisel tooth digging rodent. Proc Natl Acad Sci USA 108(42):17355–17359

    Article  PubMed  CAS  Google Scholar 

  23. Lagronova-Churava S, Spoutil F, Vojtechova S, Lesot H, Peterka M, Klein OD, Peterkova R (2013) The dynamics of supernumerary tooth development are differentially regulated by Sprouty genes. J Exp Zool B 320(5):307–320

    Article  CAS  Google Scholar 

  24. Chae YM, Jin YJ, Kim HS, Gwon GJ, Sohn WJ, Kim SH, Kim MO, Lee S, Suh JY, Kim JY (2012) Proteome analysis of developing mice diastema region. BMB Rep 45(6):337–341

    Article  PubMed  CAS  Google Scholar 

  25. Yamamoto H, Cho SW, Song SJ, Hwang HJ, Lee MJ, Kim JY, Jung HS (2005) Characteristic tissue interaction of the diastema region in mice. Arch Oral Biol 50(2):189–198

    Article  PubMed  CAS  Google Scholar 

  26. Thesleff I, Jarvinen E, Suomalainen M (2007) Affecting tooth morphology and renewal by fine-tuning the signals mediating cell and tissue interactions. Novartis Found Symp 284:142–153 (discussion 53-63)

    Article  PubMed  CAS  Google Scholar 

  27. Cai J, Cho SW, Kim JY, Lee MJ, Cha YG, Jung HS (2007) Patterning the size and number of tooth and its cusps. Dev Biol 304(2):499–507

    Article  PubMed  CAS  Google Scholar 

  28. Ishida K, Murofushi M, Nakao K, Morita R, Ogawa M, Tsuji T (2011) The regulation of tooth morphogenesis is associated with epithelial cell proliferation and the expression of Sonic hedgehog through epithelial-mesenchymal interactions. Biochem Biophys Res Commun 405(3):455–461

    Article  PubMed  CAS  Google Scholar 

  29. Thesleff I (2003) Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci 116(Pt 9):1647–1648

    Article  PubMed  CAS  Google Scholar 

  30. Vainio S, Karavanova I, Jowett A, Thesleff I (1993) Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell 75(1):45–58

    Article  PubMed  CAS  Google Scholar 

  31. Chen Y, Bei M, Woo I, Satokata I, Maas R (1996) Msx1 controls inductive signaling in mammalian tooth morphogenesis. Development 122(10):3035–3044

    PubMed  CAS  Google Scholar 

  32. Jernvall J, Aberg T, Kettunen P, Keranen S, Thesleff I (1998) The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development 125(2):161–169

    PubMed  CAS  Google Scholar 

  33. Charles C, Pantalacci S, Tafforeau P, Headon D, Laudet V, Viriot L (2009) Distinct impacts of Eda and Edar loss of function on the mouse dentition. PLoS ONE 4(4):e4985

    Article  PubMed Central  PubMed  Google Scholar 

  34. Thesleff I, Keranen S, Jernvall J (2001) Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res 15:14–18

    Article  PubMed  CAS  Google Scholar 

  35. Lazzari V, Charles C, Tafforeau P, Vianey-Liaud M, Aguilar JP, Jaeger JJ, Michaux J, Viriot L (2008) Mosaic convergence of rodent dentitions. PLoS ONE 3(10):e3607

    Article  PubMed Central  PubMed  Google Scholar 

  36. Jernvall J, Keranen SV, Thesleff I (2000) Evolutionary modification of development in mammalian teeth: quantifying gene expression patterns and topography. Proc Natl Acad Sci USA 97(26):14444–14448

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Jernvall J, Jung HS (2000) Genotype, phenotype, and developmental biology of molar tooth characters. Am J Phys Anthropol Suppl 31:171–190

    Article  Google Scholar 

  38. Plikus MV, Zeichner-David M, Mayer JA, Reyna J, Bringas P, Thewissen JG, Snead ML, Chai Y, Chuong CM (2005) Morphoregulation of teeth: modulating the number, size, shape and differentiation by tuning Bmp activity. Evol Dev 7(5):440–457

    Article  PubMed  CAS  Google Scholar 

  39. Wang XP, Suomalainen M, Jorgez CJ, Matzuk MM, Wankell M, Werner S, Thesleff I (2004) Modulation of activin/bone morphogenetic protein signaling by follistatin is required for the morphogenesis of mouse molar teeth. Dev Dyn 231(1):98–108

    Article  PubMed  CAS  Google Scholar 

  40. Ohazama A, Tucker A, Sharpe PT (2005) Organized tooth-specific cellular differentiation stimulated by BMP4. J Dent Res 84(7):603–606

    Article  PubMed  CAS  Google Scholar 

  41. Mina M, Kollar EJ (1987) The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol 32(2):123–127

    Article  PubMed  CAS  Google Scholar 

  42. Tucker AS, Matthews KL, Sharpe PT (1998) Transformation of tooth type induced by inhibition of BMP signaling. Science 282(5391):1136–1138

    Article  PubMed  CAS  Google Scholar 

  43. Lumsden AG (1988) Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development 103(Suppl):155–169

    PubMed  Google Scholar 

  44. Zhang YD, Chen Z, Song YQ, Liu C, Chen YP (2005) Making a tooth: growth factors, transcription factors, and stem cells. Cell Res 15(5):301–316

    Article  PubMed  CAS  Google Scholar 

  45. Daley GQ, Scadden DT (2008) Prospects for stem cell-based therapy. Cell 132(4):544–548

    Article  PubMed  CAS  Google Scholar 

  46. Vanden Berg-Foels WS (2013) In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment. Tissue Eng Part B Rev [Epub ahead of print]

  47. Ohara T, Itaya T, Usami K, Ando Y, Sakurai H, Honda MJ, Ueda M, Kagami H (2010) Evaluation of scaffold materials for tooth tissue engineering. J Biomed Mater Res A 94(3):800–805

    PubMed  Google Scholar 

  48. Song JS, Kim SO, Kim SH, Choi HJ, Son HK, Jung HS, Kim CS, Lee JH (2012) In vitro and in vivo characteristics of stem cells derived from the periodontal ligament of human deciduous and permanent teeth. Tissue Eng Part A 18(19–20):2040–2051

    Article  PubMed  CAS  Google Scholar 

  49. Yang KC, Wang CH, Chang HH, Chan WP, Chi CH, Kuo TF (2012) Fibrin glue mixed with platelet-rich fibrin as a scaffold seeded with dental bud cells for tooth regeneration. J Tissue Eng Regen Med 6(10):777–785

    Article  PubMed  CAS  Google Scholar 

  50. Mahapoka E, Arirachakaran P, Watthanaphanit A, Rujiravanit R, Poolthong S (2012) Chitosan whiskers from shrimp shells incorporated into dimethacrylate-based dental resin sealant. Dent Mater J 31(2):273–279

    Article  PubMed  CAS  Google Scholar 

  51. d’Aquino R, De Rosa A, Lanza V, Tirino V, Laino L, Graziano A, Desiderio V, Laino G, Papaccio G (2009) Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 18:75–83

    PubMed  Google Scholar 

  52. Matsunaga T, Yanagiguchi K, Yamada S, Ohara N, Ikeda T, Hayashi Y (2006) Chitosan monomer promotes tissue regeneration on dental pulp wounds. J Biomed Mater Res A 76(4):711–720

    PubMed  Google Scholar 

  53. Kim SE, Suh DH, Yun YP, Lee JY, Park K, Chung JY, Lee DW (2012) Local delivery of alendronate eluting chitosan scaffold can effectively increase osteoblast functions and inhibit osteoclast differentiation. J Mater Sci Mater Med 23(11):2739–2749

    Article  PubMed  CAS  Google Scholar 

  54. Inuyama Y, Kitamura C, Nishihara T, Morotomi T, Nagayoshi M, Tabata Y, Matsuo K, Chen KK, Terashita M (2010) Effects of hyaluronic acid sponge as a scaffold on odontoblastic cell line and amputated dental pulp. J Biomed Mater Res B 92(1):120–128

    Article  Google Scholar 

  55. Moshaverinia A, Chen C, Akiyama K, Ansari S, Xu X, Chee WW, Schricker SR, Shi S (2012) Alginate hydrogel as a promising scaffold for dental-derived stem cells: an in vitro study. J Mater Sci Mater Med 23(12):3041–3051

    Article  PubMed  CAS  Google Scholar 

  56. Dobie K, Smith G, Sloan AJ, Smith AJ (2002) Effects of alginate hydrogels and TGF-beta 1 on human dental pulp repair in vitro. Connect Tissue Res 43(2–3):387–390

    Article  PubMed  CAS  Google Scholar 

  57. Khojasteh A, Behnia H, Hosseini FS, Dehghan MM, Abbasnia P, Abbas FM (2013) The effect of PCL-TCP scaffold loaded with mesenchymal stem cells on vertical bone augmentation in dog mandible: a preliminary report. J Biomed Mater Res B 101(5):848–854

    Article  Google Scholar 

  58. Uematsu K, Hattori K, Ishimoto Y, Yamauchi J, Habata T, Takakura Y, Ohgushi H, Fukuchi T, Sato M (2005) Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials 26(20):4273–4279

    Article  PubMed  CAS  Google Scholar 

  59. Galler KM, Cavender AC, Koeklue U, Suggs LJ, Schmalz G, D’Souza RN (2011) Bioengineering of dental stem cells in a PEGylated fibrin gel. Regen Med 6(2):191–200

    Article  PubMed  CAS  Google Scholar 

  60. Kim NR, Lee DH, Chung PH, Yang HC (2009) Distinct differentiation properties of human dental pulp cells on collagen, gelatin, and chitosan scaffolds. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108(5):e94–e100

    Article  PubMed  Google Scholar 

  61. Nadeem D, Kiamehr M, Yang X, Su B (2013) Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering. Mater Sci Eng C 33(5):2669–2678

    Article  CAS  Google Scholar 

  62. Cornelini R, Artese L, Rubini C, Fioroni M, Ferrero G, Santinelli A, Piattelli A (2001) Vascular endothelial growth factor and microvessel density around healthy and failing dental implants. Int J Oral Maxillofac Implants 16(3):389–393

    PubMed  CAS  Google Scholar 

  63. Yukio O, Chiaki K, Takahiko M, Masamichi T (2003) Localizations of vascular endothelial growth factor(VEGF) and VEGF receptor 2(VEGFR 2/Flk-1) during mouse tooth development. Jpn J Conserv Dent 46(1):37–45

    Google Scholar 

  64. Megan L, Jessica J, Warren H, Joel B (2013) Effects of VEGF-loaded chitosan coatings on osteoblast mineralization. J Biomed Mater Res A [Epub ahead of print]

  65. Lin S, Roguin A, Metzger Z, Levin L (2008) Vascular endothelial growth factor (VEGF) response to dental trauma: a preliminary study in rats. Dent Traumatol 24(4):435–438

    Article  PubMed  CAS  Google Scholar 

  66. Anthonsen M, Smidsrod O (1995) Hydrogen ion titration of chitosans with varying degrees of N-acetylation by monitoring induced 1H-NMR chemical shifts. Carbohydr Polym 26(4):303–305

    Article  CAS  Google Scholar 

  67. Berth G, Dautzenberg H, Peter MG (1998) Physico-chemical characterization of chitosans varying in degree of acetylation. Carbohydr Polym 36(2–3):205–216

    Article  CAS  Google Scholar 

  68. Hejazi R, Amiji M (2003) Chitosan-based gastrointestinal delivery systems. J Control Release 89(2):151–165

    Article  PubMed  CAS  Google Scholar 

  69. Fang N, Chan V, Mao HQ, Leong KW (2001) Interactions of phospholipid bilayer with chitosan: effect of molecular weight and pH. Biomacromolecules 2(4):1161–1168

    Article  PubMed  CAS  Google Scholar 

  70. Thanou M, Verhoef JC, Junginger HE (2001) Chitosan and its derivatives as intestinal absorption enhancers. Adv Drug Deliv Rev 50(Suppl 1):S91–S101

    Article  PubMed  CAS  Google Scholar 

  71. Subramani K, Birch MA (2006) Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function. Biomed Mater 1(3):144–154

    Article  PubMed  CAS  Google Scholar 

  72. Schaffert D, Wagner E (2008) Gene therapy progress and prospects: synthetic polymer-based systems. Gene Ther 15(16):1131–1138

    Article  PubMed  CAS  Google Scholar 

  73. Lai WF, Lin MC (2009) Nucleic acid delivery with chitosan and its derivatives. J Control Release 134(3):158–168

    Article  PubMed  CAS  Google Scholar 

  74. Lai WF (2014) Cyclodextrins in non-viral gene delivery. Biomaterials 35(1):401–411

    Article  PubMed  CAS  Google Scholar 

  75. Lai WF (2013) Nucleic acid delivery: roles in biogerontological interventions. Ageing Res Rev 12(1):310–315

    Article  PubMed  CAS  Google Scholar 

  76. Lai WF (2011) In vivo nucleic acid delivery with PEI and its derivatives: current status and perspectives. Expert Rev Med Devices 8(2):173–185

    Article  PubMed  CAS  Google Scholar 

  77. Lai WF (2011) Delivery of therapeutics: current status and its relevance to regenerative innovations. Recent Patents Nanomed 1(1):7–18

    Article  CAS  Google Scholar 

  78. Paul W, Garside CP (2000) Chitosan, a drug carrier for the 21st century: a review. STP Pharma Sci 10(1):5–22

    CAS  Google Scholar 

  79. Kichler A, Chillon M, Leborgne C, Danos O, Frisch B (2002) Intranasal gene delivery with a polyethylenimine-PEG conjugate. J Control Release 81(3):379–388

    Article  PubMed  CAS  Google Scholar 

  80. Sung SJ, Min SH, Cho KY, Lee S, Min YJ, Yeom YI, Park JK (2003) Effect of polyethylene glycol on gene delivery of polyethylenimine. Biol Pharm Bull 26(4):492–500

    Article  PubMed  CAS  Google Scholar 

  81. Vonarbourg A, Passirani C, Saulnier P, Benoit JP (2006) Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27(24):4356–4373

    Article  PubMed  CAS  Google Scholar 

  82. Wong JY, Kuhl TL, Israelachvili JN, Mullah N, Zalipsky S (1997) Direct measurement of a tethered ligand-receptor interaction potential. Science 275(5301):820–822

    Article  PubMed  CAS  Google Scholar 

  83. Dispinar T, Van Camp W, De Cock LJ, De Geest BG, Du Prez FE (2012) Redox-responsive degradable PEG cryogels as potential cell scaffolds in tissue engineering. Macromol Biosci 12(3):383–394

    Article  PubMed  CAS  Google Scholar 

  84. Engebretson B, Sikavitsas VI (2012) Long-term in vivo effect of PEG bone tissue engineering scaffolds. J Long Term Eff Med Implants 22(3):211–218

    Article  PubMed  CAS  Google Scholar 

  85. Raftery R, O’Brien FJ, Cryan SA (2013) Chitosan for gene delivery and orthopedic tissue engineering applications. Molecules 18(5):5611–5647

    Article  PubMed  CAS  Google Scholar 

  86. Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 49(36):6288–6308

    Article  PubMed  CAS  Google Scholar 

  87. Bonora GM, Drioli S (2008) Recent advances on patents in poly(ethylene glycol)-based drug delivery. Recent Pat Drug Deliv Formul 2(2):189–195

    Article  PubMed  CAS  Google Scholar 

  88. Muller C, Ma BN, Gust R, Bernkop-Schnurch A (2013) Thiopyrazole preactivated chitosan: combining mucoadhesion and drug delivery. Acta Biomater 9(5):6585–6593

    Article  PubMed  Google Scholar 

  89. Qu D, Lin H, Zhang N, Xue J, Zhang C (2013) In vitro evaluation on novel modified chitosan for targeted antitumor drug delivery. Carbohydr Polym 92(1):545–554

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Liwen Li for her help on an earlier version of this manuscript. This work was supported by a grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (A101578) and by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MEST) (No. 2011-0027790).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Sung Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, WF., Lee, JM. & Jung, HS. Molecular and engineering approaches to regenerate and repair teeth in mammals. Cell. Mol. Life Sci. 71, 1691–1701 (2014). https://doi.org/10.1007/s00018-013-1518-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1518-7

Keywords

Navigation