Skip to main content

Advertisement

Log in

The opportunistic pathogen Pseudomonas aeruginosa activates the DNA double-strand break signaling and repair pathway in infected cells

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Highly hazardous DNA double-strand breaks can be induced in eukaryotic cells by a number of agents including pathogenic bacterial strains. We have investigated the genotoxic potential of Pseudomonas aeruginosa, an opportunistic pathogen causing devastating nosocomial infections in cystic fibrosis or immunocompromised patients. Our data revealed that infection of immune or epithelial cells by P. aeruginosa triggered DNA strand breaks and phosphorylation of histone H2AX (γH2AX), a marker of DNA double-strand breaks. Moreover, it induced formation of discrete nuclear repair foci similar to gamma-irradiation-induced foci, and containing γH2AX and 53BP1, an adaptor protein mediating the DNA-damage response pathway. Gene deletion, mutagenesis, and complementation in P. aeruginosa identified ExoS bacterial toxin as the major factor involved in γH2AX induction. Chemical inhibition of several kinases known to phosphorylate H2AX demonstrated that Ataxia Telangiectasia Mutated (ATM) was the principal kinase in P. aeruginosa-induced H2AX phosphorylation. Finally, infection led to ATM kinase activation by an auto-phosphorylation mechanism. Together, these data show for the first time that infection by P. aeruginosa activates the DNA double-strand break repair machinery of the host cells. This novel information sheds new light on the consequences of P. aeruginosa infection in mammalian cells. As pathogenic Escherichia coli or carcinogenic Helicobacter pylori can alter genome integrity through DNA double-strand breaks, leading to chromosomal instability and eventually cancer, our findings highlight possible new routes for further investigations of P. aeruginosa in cancer biology and they identify ATM as a potential target molecule for drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADP-RT:

ADP ribosyl transferase

ATM:

Ataxia telangiectasia mutated

DSB:

Double-strand breaks

OGG1:

8-oxoguanine DNA glycosylase

Crk:

CT-10 regulator of kinase

MOI:

Multiplicity of infection

PI:

Propidium iodide

CDT:

Cytolethal distending toxin

CIP:

Calf intestine phosphatase

T3SS:

Type III secretion system

References

  1. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204

    Article  PubMed  CAS  Google Scholar 

  2. Derheimer FA, Kastan MB (2010) Multiple roles of ATM in monitoring and maintaining DNA integrity. FEBS Lett 584:3675–3681

    Article  PubMed  CAS  Google Scholar 

  3. Kinner A, Wu W, Staudt C, Iliakis G (2008) Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36:5678–5694

    Article  PubMed  CAS  Google Scholar 

  4. Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA et al (2008) Gamma H2AX and cancer. Nat Rev Cancer 8:957–967

    Article  PubMed  CAS  Google Scholar 

  5. Mah LJ, El-Osta A, Karagiannis TC (2010) GammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24:679–686

    Article  PubMed  CAS  Google Scholar 

  6. Nougayrède JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E et al (2006) Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313:848–851

    Article  PubMed  Google Scholar 

  7. Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E et al (2010) Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci USA 107:11537–11542

    Article  PubMed  CAS  Google Scholar 

  8. Lara-Tejero M, Galán JE (2000) A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science 290:354–357

    Article  PubMed  CAS  Google Scholar 

  9. Li L, Sharipo A, Chaves-Olarte E, Masucci MG, Levitsky V et al (2002) The Haemophilus ducreyi cytolethal distending toxin activates sensors of DNA damage and repair complexes in proliferating and non-proliferating cells. Cell Microbiol 4:87–99

    Article  PubMed  CAS  Google Scholar 

  10. Oswald E, Nougayrède JP, Taieb F, Sugai M (2005) Bacterial toxins that modulate host cell-cycle progression. Curr Opin Microbiol 8:83–91

    Article  PubMed  CAS  Google Scholar 

  11. Kunz AN, Brook I (2010) Emerging resistant Gram-negative aerobic bacilli in hospital-acquired infections. Chemotherapy 56:492–500

    Article  PubMed  CAS  Google Scholar 

  12. Kerr KG, Snelling AM (2009) Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect 73:338–344

    Article  PubMed  CAS  Google Scholar 

  13. Wu M, Huang H, Zhang W, Kannan S, Weaver A et al (2011) Host DNA repair proteins in response to Pseudomonas aeruginosa in lung epithelial cells and in mice. Infect Immun 79:75–87

    Article  PubMed  CAS  Google Scholar 

  14. David SS, O’Shea VL, Kundu S (2007) Base-excision repair of oxidative DNA damage. Nature 447:941–950

    Article  PubMed  CAS  Google Scholar 

  15. Veesenmeyer JL, Hauser AR, Lisboa T, Rello J (2009) Pseudomonas aeruginosa virulence and therapy: evolving translational strategies. Crit Care Med 37:1777–1786

    Article  PubMed  Google Scholar 

  16. Roy-Burman A, Savel RH, Racine S, Swanson BL, Revadigar NS et al (2001) Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 183:1767–1774

    Article  PubMed  CAS  Google Scholar 

  17. Hauser AR, Cobb E, Bodi M, Mariscal D, Vallés J et al (2002) Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Crit Care Med 30:521–528

    Article  PubMed  CAS  Google Scholar 

  18. Hauser AR (2009) The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 7:654–665

    Article  PubMed  CAS  Google Scholar 

  19. Deng Q, Barbieri JT (2008) Molecular mechanisms of the cytotoxicity of ADP-ribosylating toxins. Annu Rev Microbiol 62:271–288

    Article  PubMed  CAS  Google Scholar 

  20. Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907–1916

    Article  PubMed  CAS  Google Scholar 

  21. Grassmé H, Jendrossek V, Gulbins E (2001) Molecular mechanisms of bacteria induced apoptosis. Apoptosis 6:441–445

    Article  PubMed  Google Scholar 

  22. Aude-Garcia C, Collin-Faure V, Bausinger H, Hanau D, Rabilloud T et al (2010) Dual roles for MEF2A and MEF2D during human macrophage terminal differentiation and c-Jun expression. Biochem J 430:237–244

    Article  PubMed  CAS  Google Scholar 

  23. Rovera G, Santoli D, Damsky C (1979) Human promyelocytic leukemia cells in culture differentiate into macrophage-like cells when treated with a phorbol diester. Proc Natl Acad Sci USA 76:2779–2783

    Article  PubMed  CAS  Google Scholar 

  24. Toussaint B, Delic-Attree I, Vignais PM (1993) Pseudomonas aeruginosa contains an IHF-like protein that binds to the algD Promoter. Biochem Biophys Res Commun 196(1):416–1421

    Article  PubMed  CAS  Google Scholar 

  25. Weston CR, Davis RJ (2007) The JNK signal transduction pathway. Curr Opin Cell Biol 19:142–149

    Article  PubMed  CAS  Google Scholar 

  26. Jia J, Alaoui-El-Azher M, Chow M, Chambers TC, Baker H et al (2003) c-Jun NH2-terminal kinase-mediated signaling is essential for Pseudomonas aeruginosa ExoS-induced apoptosis. Infect Immun 71:3361–3370

    Article  PubMed  CAS  Google Scholar 

  27. Jendrossek V, Grassmé H, Mueller I, Lang F, Gulbins E (2001) Pseudomonas aeruginosa-induced apoptosis involves mitochondria and stress-activated protein kinases. Infect Immun 69:2675–2683

    Article  PubMed  CAS  Google Scholar 

  28. Rucks EA, Olson JC (2005) Characterization of an ExoS Type III translocation-resistant cell line. Infect Immun 73:638–643

    Article  PubMed  CAS  Google Scholar 

  29. Bridge DR, Novotny MJ, Moore ER, Olson JC (2010) Role of host cell polarity and leading edge properties in Pseudomonas type III secretion. Microbiology 156:356–373

    Article  PubMed  CAS  Google Scholar 

  30. Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M (1991) Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature 354:494–496

    Article  PubMed  CAS  Google Scholar 

  31. Dacheux D, Toussaint B, Richard M, Brochier G, Croize J et al (2000) Pseudomonas aeruginosa cystic fibrosis isolates induce rapid, type III secretion-dependent, but ExoU-independent, oncosis of macrophages and polymorphonuclear neutrophils. Infect Immun 68:2916–2924

    Article  PubMed  CAS  Google Scholar 

  32. Yahr TL, Mende-Mueller LM, Friese MB, Frank DW (1997) Identification of type III secreted products of the Pseudomonas aeruginosa exoenzyme S regulon. J Bacteriol 179:7165–7168

    PubMed  CAS  Google Scholar 

  33. Goehring UM, Schmidt G, Pederson KJ, Aktories K, Barbieri JT (1999) The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J Biol Chem 274:36369–36372

    Article  PubMed  CAS  Google Scholar 

  34. Radke J, Pederson KJ, Barbieri JT (1999) Pseudomonas aeruginosa exoenzyme S is a biglutamic acid ADP-ribosyltransferase. Infect Immun 67:1508–1510

    PubMed  CAS  Google Scholar 

  35. Lu C, Zhu F, Cho YY, Tang F, Yoga T et al (2006) Cell apoptosis: requirement of H2AX in DNA ladder formation, but not for the activation of caspase-3. Mol Cell 23:121–132

    Article  PubMed  CAS  Google Scholar 

  36. Deng Q, Zhang Y, Barbieri JT (2007) Intracellular trafficking of Pseudomonas ExoS, a type III cytotoxin. Traffic 8:1331–1345

    Article  PubMed  CAS  Google Scholar 

  37. Katsurahara M, Kobayashi Y, Iwasa M, Ma N, Inoue H (2009) Reactive nitrogen species mediate DNA damage in Helicobacter pylori-infected gastric mucosa. Helicobacter 14:552–558

    Article  PubMed  CAS  Google Scholar 

  38. HirakuY Kawanishi S, Ichinose T, Murata M (2010) The role of iNOS-mediated DNA damage in infection- and asbestos-induced carcinogenesis. Ann N Y Acad Sci 1203:15–22

    Article  Google Scholar 

  39. Jia J, Wang Y, Zhou L, Jin S (2006) Expression of Pseudomonas aeruginosa toxin ExoS effectively induces apoptosis in host cells. Infect Immun 74:6557–6570

    Article  PubMed  CAS  Google Scholar 

  40. Zio DD, Cianfanelli V, Cecconi F (2012) New insights into the link between DNA damage and apoptosis. Antioxid Redox Signal. doi:10.1089/ars.2012.4938

    PubMed  Google Scholar 

  41. Toller IM, Neelsen KJ, Steger M, Hartung ML, Hottiger MO et al (2011) Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells. Proc Natl Acad Sci USA 108:14944–14949

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. F. Boulay for very helpful scientific discussions, I. Attrée for advice and critical reading of the manuscript, J. Gaffé for discussion and corrections, H.P. Schweizer for the gift of mini-CTX1, Prof. B. Toussaint and Prof. B. Polack for the CHAΔTlox and CHAΔSTlox strains, D. Dacheux for the exoS mutagenesis, B. Schaack for annexin labeling reagents, J. Baudier for H1299 cells, P. Obeid for her advice on comet assays and E. Lebel for technical help. Images were obtained at the confocal microscopy facility of the “Institut de Recherches en Technologies et Sciences pour le Vivant” (iRTSV, CEA-Grenoble). Irradiations were performed in the “Anémome/Bio” irradiator in the “ARC -Nucléart” facility at the CEA-Grenoble. Part of the work of S. Elsen, V. Collin-Faure and C. Lemercier was performed in the former laboratory CEA-iRTSV-LBBSI, CNRS UMR5092 directed by Dr. F. Boulay. This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM), the Commissariat à l’Energie Atomique et aux Energies Renouvelables (CEA), the Centre National de la Recherche Scientifique (CNRS) and the Université Joseph Fourier (UJF Grenoble).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudie Lemercier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 56 kb)

Supplementary material 2 (PDF 488 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsen, S., Collin-Faure, V., Gidrol, X. et al. The opportunistic pathogen Pseudomonas aeruginosa activates the DNA double-strand break signaling and repair pathway in infected cells. Cell. Mol. Life Sci. 70, 4385–4397 (2013). https://doi.org/10.1007/s00018-013-1392-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1392-3

Keywords

Navigation