Skip to main content

Advertisement

Log in

The tumor suppressor annexin A10 is a novel component of nuclear paraspeckles

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Annexin A10 is the latest identified member of the annexin family of Ca2+- and phospholipid-binding proteins. In previous studies, downregulation of annexin A10 was correlated with dedifferentiation, invasion, and tumor progression, pointing to a possible tumor suppressor role. However, the biochemical characteristics and functions of annexin A10 remain unknown. We show that annexin A10 displays biochemical characteristics atypical for an annexin, indicating a Ca2+- and membrane-binding-independent function. Annexin A10 co-localizes with the mRNA-binding proteins SFPQ and PSPC1 at paraspeckles, an only recently discovered nuclear body, and decreases paraspeckle numbers when overexpressed in HeLa cells. In addition, annexin A10 relocates to dark perinucleolar caps upon transcriptional inhibition of RNA polymerase II. We mapped the cap-binding function of annexin A10 to the proximal part of the core domain, which is missing in the short isoform of annexin A10, and show its independence from the remaining functional type II Ca2+-binding site. In contrast to this, paraspeckle recruitment required additional core regions and was negatively affected by the mutation of the last type II Ca2+-binding site. Additionally, we show that overexpression of annexin A10 in HeLa cells increases their sensitivity to apoptosis and reduces colony formation. The identification of unique nuclear and biochemical characteristics of annexin A10 points towards its membrane-independent role in paraspeckle-associated mRNA regulation or processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Barwise JL, Walker JH (1996) Subcellular localization of annexin V in human foreskin fibroblasts: nuclear localization depends on growth state. FEBS Lett 394:213–216

    Article  CAS  PubMed  Google Scholar 

  2. Chen LL, Carmichael GG (2009) Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell 35:467–478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Chen LL, Carmichael GG (2008) Gene regulation by SINES and inosines: biological consequences of A-to-I editing of Alu element inverted repeats. Cell Cycle 7:3294–3301

    Article  CAS  PubMed  Google Scholar 

  4. Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  CAS  PubMed  Google Scholar 

  5. Clark J, Lu YJ, Sidhar SK, Parker C, Gill S, Smedley D, Hamoudi R, Linehan WM, Shipley J, Cooper CS (1997) Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Oncogene 15:2233–2239

    Article  CAS  PubMed  Google Scholar 

  6. Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33:717–726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Dye BT, Patton JG (2001) An RNA recognition motif (RRM) is required for the localization of PTB-associated splicing factor (PSF) to subnuclear speckles. Exp Cell Res 263:131–144

    Article  CAS  PubMed  Google Scholar 

  8. Eberhard DA, Karns LR, VandenBerg SR, Creutz CE (2001) Control of the nuclear-cytoplasmic partitioning of annexin II by a nuclear export signal and by p11 binding. J Cell Sci 114:3155–3166

    CAS  PubMed  Google Scholar 

  9. Farnaes L, Ditzel HJ (2003) Dissecting the cellular functions of annexin XI using recombinant human annexin XI-specific autoantibodies cloned by phage display. J Biol Chem 278:33120–33126

    Article  CAS  PubMed  Google Scholar 

  10. Filipenko NR, Waisman DM (2001) The C terminus of annexin II mediates binding to F-actin. J Biol Chem 276:5310–5315

    Article  CAS  PubMed  Google Scholar 

  11. Fox AH, Bond CS, Lamond AI (2005) P54nrb forms a heterodimer with PSP1 that localizes to paraspeckles in an RNA-dependent manner. Mol Biol Cell 16:5304–5315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Fox AH, Lam YW, Leung AK, Lyon CE, Andersen J, Mann M, Lamond AI (2002) Paraspeckles: a novel nuclear domain. Curr Biol 12:13–25

    Article  CAS  PubMed  Google Scholar 

  13. Fox AH, Lamond AI (2010) Paraspeckles. Cold Spring Harb Perspect Biol 2:a000687

    PubMed  Google Scholar 

  14. Gerke V, Creutz CE, Moss SE (2005) Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 6:449–461

    Article  CAS  PubMed  Google Scholar 

  15. Goebeler V, Ruhe D, Gerke V, Rescher U (2006) Annexin A8 displays unique phospholipid and F-actin binding properties. FEBS Lett 580:2430–2434

    Article  CAS  PubMed  Google Scholar 

  16. Goebeler V, Ruhe D, Gerke V, Rescher U (2003) Atypical properties displayed by annexin A9, a novel member of the annexin family of Ca2+ and lipid binding proteins. FEBS Lett 546:359–364

    Article  CAS  PubMed  Google Scholar 

  17. Han EK, Tahir SK, Cherian SP, Collins N, Ng SC (2000) Modulation of paclitaxel resistance by annexin IV in human cancer cell lines. Br J Cancer 83:83–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Harder T, Kellner R, Parton RG, Gruenberg J (1997) Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol. Mol Biol Cell 8:533–545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hayes MJ, Merrifield CJ, Shao D, Ayala-Sanmartin J, Schorey CD, Levine TP, Proust J, Curran J, Bailly M, Moss SE (2004) Annexin 2 binding to phosphatidylinositol 4,5-bisphosphate on endocytic vesicles is regulated by the stress response pathway. J Biol Chem 279:14157–14164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hayes MJ, Rescher U, Gerke V, Moss SE (2004) Annexin-actin interactions. Traffic 5:571–576

    Article  CAS  PubMed  Google Scholar 

  21. Hirata A, Hirata F (2002) DNA chain unwinding and annealing reactions of lipocortin (annexin) I heterotetramer: regulation by Ca2+ and Mg2+. Biochem Biophys Res Commun 291:205–209

    Article  CAS  PubMed  Google Scholar 

  22. Hirata A, Hirata F (1999) Lipocortin (Annexin) I heterotetramer binds to purine RNA and pyrimidine DNA. Biochem Biophys Res Commun 265:200–204

    Article  CAS  PubMed  Google Scholar 

  23. Jones PG, Moore GJ, Waisman DM (1992) A nonapeptide to the putative F-actin binding site of annexin-II tetramer inhibits its calcium-dependent activation of actin filament bundling. J Biol Chem 267:13993–13997

    CAS  PubMed  Google Scholar 

  24. Jost M, Thiel C, Weber K, Gerke V (1992) Mapping of three unique Ca2+-binding sites in human annexin II. Eur J Biochem 207:923–930

    Article  CAS  PubMed  Google Scholar 

  25. Jost M, Weber K, Gerke V (1994) Annexin II contains two types of Ca2+-binding sites. Biochem J 298(Pt 3):553–559

    CAS  PubMed  Google Scholar 

  26. Kim J, Kim MA, Jee CD, Jung EJ, Kim WH (2009) Reduced expression and homozygous deletion of annexin A10 in gastric carcinoma. Int J Cancer 125:1842–1850

    Article  CAS  PubMed  Google Scholar 

  27. Kim JK, Kim PJ, Jung KH, Noh JH, Eun JW, Bae HJ, Xie HJ, Shan JM, Ping WY, Park WS, Lee JY, Nam SW (2010) Decreased expression of annexin A10 in gastric cancer and its overexpression in tumor cell growth suppression. Oncol Rep 24:607–612

    CAS  PubMed  Google Scholar 

  28. Lindell TJ, Weinberg F, Morris PW, Roeder RG, Rutter WJ (1970) Specific inhibition of nuclear RNA polymerase II by alpha-amanitin. Science 170:447–449

    Article  CAS  PubMed  Google Scholar 

  29. Liu J, Rothermund CA, Ayala-Sanmartin J, Vishwanatha JK (2003) Nuclear annexin II negatively regulates growth of LNCaP cells and substitution of ser 11 and 25 to glu prevents nucleo-cytoplasmic shuttling of annexin II. BMC Biochem 4:10–25

    Article  PubMed Central  PubMed  Google Scholar 

  30. Liu SH, Lin CY, Peng SY, Jeng YM, Pan HW, Lai PL, Liu CL, Hsu HC (2002) Down-regulation of annexin A10 in hepatocellular carcinoma is associated with vascular invasion, early recurrence, and poor prognosis in synergy with p53 mutation. Am J Pathol 160:1831–1837

    Article  CAS  PubMed  Google Scholar 

  31. Lopez-Pedrera C, Villalba JM, Siendones E, Barbarroja N, Gomez-Diaz C, Rodriguez-Ariza A, Buendia P, Torres A, Velasco F (2006) Proteomic analysis of acute myeloid leukemia: identification of potential early biomarkers and therapeutic targets. Proteomics 6(Suppl 1):S293–S299

    Article  PubMed  Google Scholar 

  32. Lu SH, Chen YL, Shun CT, Lai JN, Peng SY, Lai PL, Hsu HC (2011) Expression and prognostic significance of gastric-specific annexin A10 in diffuse- and intestinal-type gastric carcinoma. J Gastroenterol Hepatol 26:90–97

    Article  PubMed  Google Scholar 

  33. Meng LX, Li Q, Xue YJ, Guo RD, Zhang YQ, Song XY (2007) Identification of gastric cancer-related genes by multiple high throughput analysis and data mining. Zhonghua Wei Chang Wai Ke Za Zhi 10:169–172

    PubMed  Google Scholar 

  34. Mickleburgh I, Burtle B, Hollas H, Campbell G, Chrzanowska-Lightowlers Z, Vedeler A, Hesketh J (2005) Annexin A2 binds to the localization signal in the 3′ untranslated region of c-myc mRNA. FEBS J 272:413–421

    Article  CAS  PubMed  Google Scholar 

  35. Morgan RO, Jenkins NA, Gilbert DJ, Copeland NG, Balsara BR, Testa JR, Fernandez MP (1999) Novel human and mouse annexin A10 are linked to the genome duplications during early chordate evolution. Genomics 60:40–49

    Article  CAS  PubMed  Google Scholar 

  36. Munksgaard PP, Mansilla F, Brems Eskildsen AS, Fristrup N, Birkenkamp-Demtroder K, Ulhoi BP, Borre M, Agerbaek M, Hermann GG, Orntoft TF, Dyrskjot L (2011) Low ANXA10 expression is associated with disease aggressiveness in bladder cancer. Br J Cancer 105:1379–1387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Naganuma T, Nakagawa S, Tanigawa A, Sasaki YF, Goshima N, Hirose T (2012) Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J 31:4020–4034

    Article  CAS  PubMed  Google Scholar 

  38. Nakagawa S, Hirose T (2012) Paraspeckle nuclear bodies-useful uselessness? Cell Mol Life Sci 69:3027–3036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Nelson MR, Creutz CE (1995) Comparison of the expression of native and mutant bovine annexin IV in Escherichia coli using four different expression systems. Protein Expr Purif 6:132–140

    Article  CAS  PubMed  Google Scholar 

  40. Notari M, Neviani P, Santhanam R, Blaser BW, Chang JS, Galietta A, Willis AE, Roy DC, Caligiuri MA, Marcucci G, Perrotti D (2006) A MAPK/HNRPK pathway controls BCR/ABL oncogenic potential by regulating MYC mRNA translation. Blood 107:2507–2516

    Article  CAS  PubMed  Google Scholar 

  41. Oliver FJ, de la Rubia G, Rolli V, Ruiz–Ruiz MC, de Murcia G, Murcia JM (1998) Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J Biol Chem 273:33533–33539

    Article  CAS  PubMed  Google Scholar 

  42. Passon DM, Lee M, Rackham O, Stanley WA, Sadowska A, Filipovska A, Fox AH, Bond CS (2012) Structure of the heterodimer of human NONO and paraspeckle protein component 1 and analysis of its role in subnuclear body formation. Proc Natl Acad Sci USA 109:4846–4850

    Article  CAS  PubMed  Google Scholar 

  43. Patsos G, Germann A, Gebert J, Dihlmann S (2010) Restoration of absent in melanoma 2 (AIM2) induces G2/M cell cycle arrest and promotes invasion of colorectal cancer cells. Int J Cancer 126:1838–1849

    CAS  PubMed  Google Scholar 

  44. Peng SY, Ou YH, Chen WJ, Li HY, Liu SH, Pan HW, Lai PL, Jeng YM, Chen DC, Hsu HC (2005) Aberrant expressions of annexin A10 short isoform, osteopontin and alpha-fetoprotein at chromosome 4q cooperatively contribute to progression and poor prognosis of hepatocellular carcinoma. Int J Oncol 26:1053–1061

    CAS  PubMed  Google Scholar 

  45. Pordzik S, Petrovici K, Schmid C, Kroell T, Schweiger C, Kohne CH, Schmetzer H (2011) Expression and prognostic value of FAS receptor/FAS ligand and TrailR1/TrailR2 in acute myeloid leukemia. Hematology 16:341–350

    Article  PubMed  Google Scholar 

  46. Prasanth KV, Prasanth SG, Xuan Z, Hearn S, Freier SM, Bennett CF, Zhang MQ, Spector DL (2005) Regulating gene expression through RNA nuclear retention. Cell 123:249–263

    Article  CAS  PubMed  Google Scholar 

  47. Raynal P, Pollard HB (1994) Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta 1197:63–93

    Article  CAS  PubMed  Google Scholar 

  48. Raynal P, van Bergen en Henegouwen PM, Hullin F, Ragab-Thomas JM, Fauvel J, Verkleij A and Chap H (1992) Morphological and biochemical evidence for partial nuclear localization of annexin 1 in endothelial cells. Biochem Biophys Res Commun 186:432-439

    Google Scholar 

  49. Rescher U, Zobiack N, Gerke V (2000) Intact Ca2+-binding sites are required for targeting of annexin 1 to endosomal membranes in living HeLa cells. J Cell Sci 113:3931–3938

    CAS  PubMed  Google Scholar 

  50. Reynolds RC, Montgomery PO, Hughes B (1964) Nucleolar “caps” produced by actinomycin D. Cancer Res 24:1269–1277

    CAS  PubMed  Google Scholar 

  51. Rick M, Ramos Garrido SI, Herr C, Thal DR, Noegel AA, Clemen CS (2005) Nuclear localization of Annexin A7 during murine brain development. BMC Neurosci 6:25–38

    Article  PubMed Central  PubMed  Google Scholar 

  52. Sacre SM, Moss SE (2002) Intracellular localization of endothelial cell annexins is differentially regulated by oxidative stress. Exp Cell Res 274:254–263

    Article  CAS  PubMed  Google Scholar 

  53. Sasaki YT, Ideue T, Sano M, Mituyama T, Hirose T (2009) MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci USA 106:2525–2530

    Article  CAS  PubMed  Google Scholar 

  54. Schiffner S, Zimara N, Schmid R, Bosserhoff AK (2011) P54nrb is a new regulator of progression of malignant melanoma. Carcinogenesis 32:1176–1182

    Article  CAS  PubMed  Google Scholar 

  55. Shav-Tal Y, Blechman J, Darzacq X, Montagna C, Dye BT, Patton JG, Singer RH, Zipori D (2005) Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol Biol Cell 16:2395–2413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Sui Y, Yang Z, Xiong S, Zhang L, Blanchard KL, Peiper SC, Dynan WS, Tuan D, Ko L (2007) Gene amplification and associated loss of 5′ regulatory sequences of CoAA in human cancers. Oncogene 26:822–835

    Article  CAS  PubMed  Google Scholar 

  57. Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci USA 87:2466–2470

    Article  CAS  PubMed  Google Scholar 

  58. Thiel C, Weber K, Gerke V (1991) Characterization of a Ca2+-binding site in human annexin II by site-directed mutagenesis. J Biol Chem 266:14732–14739

    CAS  PubMed  Google Scholar 

  59. Tzima E, Trotter PJ, Orchard MA, Walker JH (2000) Annexin V relocates to the platelet cytoskeleton upon activation and binds to a specific isoform of actin. Eur J Biochem 267:4720–4730

    Article  CAS  PubMed  Google Scholar 

  60. Tzima E, Trotter PJ, Orchard MA, Walker JH (1999) Annexin V binds to the actin-based cytoskeleton at the plasma membrane of activated platelets. Exp Cell Res 251:185–193

    Article  CAS  PubMed  Google Scholar 

  61. Xu Y, Man X, Lv Z, Li D, Sun Z, Chen H, Wang Z, Luo Y, Xu H (2012) Loss of heterozygosity at chromosomes 1p35-pter, 4q, and 18q and protein expression differences between adenocarcinomas of the distal stomach and gastric cardia. Hum Pathol 43:2308–2317

    Article  CAS  PubMed  Google Scholar 

  62. Zhang Z, Carmichael GG (2001) The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 106:465–475

    Article  CAS  PubMed  Google Scholar 

  63. Zhu F, Xu C, Jiang Z, Jin M, Wang L, Zeng S, Teng L, Cao J (2010) Nuclear localization of annexin A1 correlates with advanced disease and peritoneal dissemination in patients with gastric carcinoma. Anat Rec (Hoboken) 293:1310–1314

    Article  Google Scholar 

  64. Zobiack N, Gerke V, Rescher U (2001) Complex formation and submembranous localization of annexin 2 and S100A10 in live HepG2 cells. FEBS Lett 500:137–140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Annette Janning for technical assistance. Rabbit polyclonal anti-annexin A10 antibody was generously provided by Reginald Morgan (Department of Biochemistry and Molecular Biology, University of Oviedo, Spain). This work was supported by grants from the Interdisciplinary Clinical Research Centre of the University of Münster (IZKF, RE2/017/10) and the German Research Foundation (DFG, RE2611/2-1, SFB 629/A1) to V.G. and U.R.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Rescher.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quiskamp, N., Poeter, M., Raabe, C.A. et al. The tumor suppressor annexin A10 is a novel component of nuclear paraspeckles. Cell. Mol. Life Sci. 71, 311–329 (2014). https://doi.org/10.1007/s00018-013-1375-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1375-4

Keywords

Navigation