Skip to main content
Log in

Diffusion of d-glucose measured in the cytosol of a single astrocyte

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Astrocytes interact with neurons and endothelial cells and may mediate exchange of metabolites between capillaries and nerve terminals. In the present study, we investigated intracellular glucose diffusion in purified astrocytes after local glucose uptake. We used a fluorescence resonance energy transfer (FRET)-based nano sensor to monitor the time dependence of the intracellular glucose concentration at specific positions within the cell. We observed a delay in onset and kinetics in regions away from the glucose uptake compared with the region where we locally super-fused astrocytes with the d-glucose-rich solution. We propose a mathematical model of glucose diffusion in astrocytes. The analysis showed that after gradual uptake of glucose, the locally increased intracellular glucose concentration is rapidly spread throughout the cytosol with an apparent diffusion coefficient (D app) of (2.38 ± 0.41) × 10−10 m2 s−1 (at 22–24 °C). Considering that the diffusion coefficient of d-glucose in water is D = 6.7 × 10−10 m2 s−1 (at 24 °C), D app determined in astrocytes indicates that the cytosolic tortuosity, which hinders glucose molecules, is approximately three times higher than in aqueous solution. We conclude that the value of D app for glucose measured in purified rat astrocytes is consistent with the view that cytosolic diffusion may allow glucose and glucose metabolites to traverse from the endothelial cells at the blood–brain barrier to neurons and neighboring astrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vesce S, Bezzi P, Volterra A (1999) The active role of astrocytes in synaptic transmission. Cell Mol Life Sci 56:991–1000

    Article  PubMed  CAS  Google Scholar 

  2. Kacem K, Lacombe P, Seylaz J, Bonvento G (1998) Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia 23:1–10

    Article  PubMed  CAS  Google Scholar 

  3. Tsacopoulos M, Magistretti P (1996) Metabolic coupling between glia and neurons. J Neurosci 16:877–885

    PubMed  CAS  Google Scholar 

  4. Murphy S (1993) Astrocytes: pharmacology and function. Academic Press, San Diego

    Google Scholar 

  5. Parpura V, Zorec R (2010) Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 63:83–92

    Article  PubMed  CAS  Google Scholar 

  6. Parpura V, Baker B, Jeras M, Zorec R (2010) Regulated exocytosis in astrocytic signal integration. Neurochem Int 57:451–459

    Article  PubMed  CAS  Google Scholar 

  7. Cohen Z, Ehret M, Maitre M, Hamel E (1995) Ultrastructural analysis of tryptophan hydroxylase immunoreactive nerve terminals in the rat cerebral cortex and hippocampus: their associations with local blood vessels. Neuroscience 66:555–569

    Article  PubMed  CAS  Google Scholar 

  8. Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27:1766–1791

    Article  PubMed  CAS  Google Scholar 

  9. Clarke D, Sokoloff L (1999) Circulation and energy metabolism of the brain. In: Siegel G, Agranoff B, Albers R, Fisher S, Uhler MD (eds) Basic neurochemistry. Lippincott-Raven, Philadelphia, pp 637–669

    Google Scholar 

  10. Zhao F, Keating A (2007) Functional properties and genomics of glucose transporters. Curr Genomics 8:113–128

    Article  PubMed  CAS  Google Scholar 

  11. Maher F, Vannucci S, Simpson I (1994) Glucose transporter proteins in brain. FASEB J 8:1003–1011

    PubMed  CAS  Google Scholar 

  12. Morgello S, Uson R, Schwartz E, Haber R (1995) The human blood–brain barrier glucose transporter (GLUT1) is a glucose transporter of gray matter astrocytes. Glia 14:43–54

    Article  PubMed  CAS  Google Scholar 

  13. Leino R, Gerhart D, van Bueren A, McCall A, Drewes L (1997) Ultrastructural localization of GLUT 1 and GLUT 3 glucose transporters in rat brain. J Neurosci Res 49:617–626

    Article  PubMed  CAS  Google Scholar 

  14. Leloup C, Arluison M, Lepetit N, Cartier N, Marfaing-Jallat P, Ferré P, Pénicaud L (1994) Glucose transporter 2 (GLUT 2): expression in specific brain nuclei. Brain Res 638:221–226

    Article  PubMed  CAS  Google Scholar 

  15. Arluison M, Quignon M, Nguyen P, Thorens B, Leloup C, Penicaud L (2004) Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain–an immunohistochemical study. J Chem Neuroanat 28:117–136

    Article  PubMed  CAS  Google Scholar 

  16. Griffin L, Gelb B, Adams V, McCabe E (1992) Developmental expression of hexokinase 1 in the rat. Biochim Biophys Acta 1129:309–317

    Article  PubMed  CAS  Google Scholar 

  17. Needels D, Wilson J (1983) The identity of hexokinase activities from mitochondrial and cytoplasmic fractions of rat brain homogenates. J Neurochem 40:1134–1143

    Article  PubMed  CAS  Google Scholar 

  18. Wilkin G, Wilson J (1977) Localization of hexokinase in neural tissue: light microscopic studies with immunofluorescence and histochemical procedures. J Neurochem 29:1039–1051

    Article  PubMed  CAS  Google Scholar 

  19. Lynch R, Fogarty K, Fay F (1991) Modulation of hexokinase association with mitochondria analyzed with quantitative three-dimensional confocal microscopy. J Cell Biol 112:385–395

    Article  PubMed  CAS  Google Scholar 

  20. Nagamatsu S, Nakamichi Y, Inoue N, Inoue M, Nishino H, Sawa H (1996) Rat C6 glioma cell growth is related to glucose transport and metabolism. Biochem J 319(Pt 2):477–482

    PubMed  CAS  Google Scholar 

  21. Ben-Yoseph O, Boxer P, Ross B (1994) Oxidative stress in the central nervous system: monitoring the metabolic response using the pentose phosphate pathway. Dev Neurosci 16:328–336

    Article  PubMed  CAS  Google Scholar 

  22. Leo G, Driscoll B, Shank R, Kaufman E (1993) Analysis of [1–13C] D-glucose metabolism in cultured astrocytes and neurons using nuclear magnetic resonance spectroscopy. Dev Neurosci 15:282–288

    Article  PubMed  CAS  Google Scholar 

  23. Wiesinger H, Hamprecht B, Dringen R (1997) Metabolic pathways for glucose in astrocytes. Glia 21:22–34

    Article  PubMed  CAS  Google Scholar 

  24. Pellerin L, Magistretti P (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilisation. Proc Natl Acad Sci USA 91:10625–10629

    Article  PubMed  CAS  Google Scholar 

  25. Cataldo A, Broadwell R (1986) Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. II. Choroid plexus and ependymal epithelia, endothelia and pericytes. J Neurocytol 15:511–524

    Article  PubMed  CAS  Google Scholar 

  26. Wender R, Brown A, Fern R, Swanson R, Farrell K, Ransom B (2000) Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J Neurosci 20:6804–6810

    PubMed  CAS  Google Scholar 

  27. Fillenz M, Lowry J, Boutelle M, Fray A (1999) The role of astrocytes and noradrenaline in neuronal glucose metabolism. Acta Physiol Scand 167:275–284

    Article  PubMed  CAS  Google Scholar 

  28. Walls A, Heimbürger C, Bouman S, Schousboe A, Waagepetersen H (2009) Robust glycogen shunt activity in astrocytes: effects of glutamatergic and adrenergic agents. Neuroscience 158:284–292

    Article  PubMed  CAS  Google Scholar 

  29. Marrif H, Juurlink B (1999) Astrocytes respond to hypoxia by increasing glycolytic capacity. J Neurosci Res 57:255–260

    Article  PubMed  CAS  Google Scholar 

  30. Niitsu Y, Hori O, Yamaguchi A, Bando Y, Ozawa K, Tamatani M, Ogawa S, Tohyama M (1999) Exposure of cultured primary rat astrocytes to hypoxia results in intracellular glucose depletion and induction of glycolytic enzymes. Brain Res Mol Brain Res 74:26–34

    Article  PubMed  CAS  Google Scholar 

  31. Kahlert S, Reiser G (2004) Glial perspectives of metabolic states during cerebral hypoxia—calcium regulation and metabolic energy. Cell Calcium 36:295–302

    Article  PubMed  CAS  Google Scholar 

  32. Bekar LK, He W, Nedergaard M (2008) Locus coeruleus a-adrenergic—mediated activation of cortical astrocytes in vivo. Cereb Cortex 18:2789–2795

    Article  PubMed  Google Scholar 

  33. Prebil M, Vardjan N, Jensen J, Zorec R, Kreft M (2011) Dynamic monitoring of cytosolic glucose in single astrocytes. Glia 59:903–913

    Article  PubMed  Google Scholar 

  34. Forsyth R, Bartlett K, Burchell A, Scott H, Eyre J (1993) Astrocytic glucose-6-phosphatase and the permeability of brain microsomes to glucose 6-phosphate. Biochem J 294(Pt 1):145–151

    PubMed  CAS  Google Scholar 

  35. Dringen R, Hamprecht B (1993) Differences in glycogen metabolism in astroglia-rich primary cultures and sorbitol-selected astroglial cultures derived from mouse brain. Glia 8:143–149

    Article  PubMed  CAS  Google Scholar 

  36. Forsyth R (1996) Astrocytes and the delivery of glucose from plasma to neurons. Neurochem Int 28:231–241

    Article  PubMed  CAS  Google Scholar 

  37. Fehr M, Lalonde S, Lager I, Wolff M, Frommer W (2003) In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. J Biol Chem 278:19127–19133

    Article  PubMed  CAS  Google Scholar 

  38. Takanaga H, Chaudhuri B, Frommer W (2008) GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. Biochim Biophys Acta 1778:1091–1099

    Article  PubMed  CAS  Google Scholar 

  39. Schwartz J, Wilson D (1992) Preparation and characterization of type 1 astrocytes cultured from adult rat cortex, cerebellum, and striatum. Glia 5:75–80

    Article  PubMed  CAS  Google Scholar 

  40. Kreft M, Stenovec M, Rupnik M, Grilc S, Krzan M, Potokar M, Pangrsic T, Haydon P, Zorec R (2004) Properties of Ca (2 +)-dependent exocytosis in cultured astrocytes. Glia 46:437–445

    Article  PubMed  Google Scholar 

  41. John S, Ottolia M, Weiss J, Ribalet B (2008) Dynamic modulation of intracellular glucose imaged in single cells using a FRET-based glucose nanosensor. Pflugers Arch 456:307–322

    Article  PubMed  CAS  Google Scholar 

  42. Bittner C, Loaiza A, Ruminot I, Larenas V, Sotelo-Hitschfeld T, Gutiérrez R, Córdova A, Valdebenito R, Frommer W, Barros L (2010) High-resolution measurement of the glycolytic rate. Front Neuroenergetics 2:26. doi:10.3389/fnene.2010.00026

  43. Marucci M, Ragnarsson G, Axelsson A (2006) Electronic speckle pattern interferometry: a novel non-invasive tool for studying drug transport rate through free films. J Control Release 114:369–380

    Article  PubMed  CAS  Google Scholar 

  44. Silver I, Erecińska M (1994) Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J Neurosci 14:5068–5076

    PubMed  CAS  Google Scholar 

  45. Fellows L, Boutelle M, Fillenz M (1992) Extracellular brain glucose levels reflect local neuronal activity: a microdialysis study in awake, freely moving rats. J Neurochem 59:2141–2147

    Article  PubMed  CAS  Google Scholar 

  46. Cameron IL, Ord VA (1983) Parenteral level of glucose intake on glucose homeostasis, tumor growth, gluconeogenesis, and body composition in normal and tumor-bearing rats. Cancer Res 43:5228–5234

    PubMed  CAS  Google Scholar 

  47. Huang BW, Chiang MT, Yao HT, Chiang W (2004) The effect of high-fat and high-fructose diets on glucose tolerance and plasma lipid and leptin levels in rats. Diabetes Obes Metab 6:120–126

    Article  PubMed  CAS  Google Scholar 

  48. Prebil M, Chowdhury HH, Zorec R, Kreft M (2011) Changes in cytosolic glucose level in ATP stimulated live astrocytes. Biochem Biophys Res Commun 405:308–313

    Article  PubMed  CAS  Google Scholar 

  49. Loaiza A, Porras O, Barros L (2003) Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy. J Neurosci 23:7337–7342

    PubMed  CAS  Google Scholar 

  50. Lai J, Behar K, Liang B, Hertz L (1999) Hexokinase in astrocytes: kinetic and regulatory properties. Metab Brain Dis 14:125–133

    Article  PubMed  CAS  Google Scholar 

  51. Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11:87–99

    Article  PubMed  CAS  Google Scholar 

  52. Nagy JI, Dudek FE, Rash JE (2004) Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Brain Res Rev 47:191–215

    Article  PubMed  CAS  Google Scholar 

  53. Langer J, Stephan J, Theis M, Rose CR (2012) Gap junctions mediate intercellular spread of sodium between hippocampal astrocytes in situ. Glia 60:239–252

    Article  PubMed  Google Scholar 

  54. Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:1551–1555

    Article  PubMed  CAS  Google Scholar 

  55. Tabernero A, Medina JM, Giaume C (2006) Glucose metabolism and proliferation in glia: role of astrocytic gap junctions. J Neurochem 99:1049–1061

    Article  PubMed  CAS  Google Scholar 

  56. Retamal MA, Froger N, Palacios-Prado N, Ezan P, Sáez PJ, Sáez JC, Giaume C (2007) Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J Neurosci 27:13781–13792

    Article  PubMed  CAS  Google Scholar 

  57. Ball KK, Gandhi GK, Thrash J, Cruz NF, Dienel GA (2007) Astrocytic connexin distributions and rapid, extensive dye transfer via gap junctions in the inferior colliculus: implications for [(14)C]glucose metabolite trafficking. J Neurosci Res 85:3267–3283

    Article  PubMed  CAS  Google Scholar 

  58. Nie X, Olsson Y (1996) Endothelin peptides in brain diseases. Rev Neurosci 7:177–186

    PubMed  CAS  Google Scholar 

  59. Sánchez-Alvarez R, Tabernero A, Medina J (2004) Endothelin-1 stimulates the translocation and upregulation of both glucose transporter and hexokinase in astrocytes: relationship with gap junctional communication. J Neurochem 89:703–714

    Article  PubMed  Google Scholar 

  60. Northam W, Bedoy C, Mobley P (1989) Pharmacological identification of the alpha-adrenergic receptor type which inhibits the beta-adrenergic activated adenylate cyclase system in cultured astrocytes. Glia 2:129–133

    Article  PubMed  CAS  Google Scholar 

  61. Hertz L, Lovatt D, Goldman S, Nedergaard M (2010) Adrenoceptors in brain: cellular gene expression and effects on astrocytic metabolism and [Ca(2 +)]i. Neurochem Int 57:411–420

    Article  PubMed  CAS  Google Scholar 

  62. Fray A, Forsyth R, Boutelle M, Fillenz M (1996) The mechanisms controlling physiologically stimulated changes in rat brain glucose and lactate: a microdialysis study. J Physiol 496(Pt 1):49–57

    PubMed  CAS  Google Scholar 

  63. Subbarao K, Hertz L (1991) Stimulation of energy metabolism by alpha-adrenergic agonists in primary cultures of astrocytes. J Neurosci Res 28:399–405

    Article  PubMed  CAS  Google Scholar 

  64. Subbarao K, Hertz L (1990) Effect of adrenergic agonists on glycogenolysis in primary cultures of astrocytes. Brain Res 536:220–226

    Article  PubMed  CAS  Google Scholar 

  65. Gibbs M, Hutchinson D, Hertz L (2008) Astrocytic involvement in learning and memory consolidation. Neurosci Biobehav Rev 32:927–944

    Article  PubMed  Google Scholar 

  66. Shulman R, Hyder F, Rothman D (2001) Cerebral energetics and the glycogen shunt: neurochemical basis of functional imaging. Proc Natl Acad Sci USA 98:6417–6422

    Article  PubMed  CAS  Google Scholar 

  67. Ghosh A, Cheung Y, Mansfield B, Chou J (2005) Brain contains a functional glucose-6-phosphatase complex capable of endogenous glucose production. J Biol Chem 280:11114–11119

    Article  PubMed  CAS  Google Scholar 

  68. DiNuzzo M, Mangia S, Maraviglia B, Giove F (2010) Changes in glucose uptake rather than lactate shuttle take center stage in subserving neuroenergetics: evidence from mathematical modeling. J Cereb Blood Flow Metab 30:586–602

    Article  PubMed  CAS  Google Scholar 

  69. Hrabetová S, Nicholson C (2004) Contribution of dead-space microdomains to tortuosity of brain extracellular space. Neurochem Int 45:467–477

    Article  PubMed  Google Scholar 

  70. Andersson M, Axelsson A, Zacchi G (1997) Diffusion of glucose and insulin in a swelling N-isopropylacrylamide gel. Int J Pharm 157:199–208

    Article  PubMed  CAS  Google Scholar 

  71. Groebe K, Erz S, Mueller-Klieser W (1994) Glucose diffusion coefficients determined from concentration profiles in EMT6 tumor spheroids incubated in radioactively labeled l-glucose. Adv Exp Med Biol 361:619–625

    Article  PubMed  CAS  Google Scholar 

  72. Bashkatov AN, Genina EA, Sinichkin YP, Kochubey VI, Lakodina NA, Tuchin VV (2003) Glucose and mannitol diffusion in human dura mater. Biophys J 85:3310–3318

    Article  PubMed  CAS  Google Scholar 

  73. Gerhardt GA, Adams RN (1982) Determination of diffusion coefficients by flow injection analysis. Anal Chem 54:2618–2620

    Article  CAS  Google Scholar 

  74. Nicholson C (2001) Diffusion and related transport mechanisms in brain tissue. Rep Prog Phys 64:815–884

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Wolf B. Frommer for providing the plasmid FLII12PGLU-700μ∆6 (http://www.addgene.org). We thank Dr. Helena H. Chowdhury and Dr. Nina Vardjan for valuable help with plasmid multiplication. This work was supported by Grants #P3-310, #J3-4146 from the Slovenian Research Agency (ARRS) and COST (European Cooperation in Science and Technology) action BM1002. M.L. acknowledges the support of ARRS through Program P1-0201 and Project J1-4148. He also thanks Dr. Andrej Lajovic for discussions and help with numerical manipulation of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Kreft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreft, M., Lukšič, M., Zorec, T.M. et al. Diffusion of d-glucose measured in the cytosol of a single astrocyte. Cell. Mol. Life Sci. 70, 1483–1492 (2013). https://doi.org/10.1007/s00018-012-1219-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1219-7

Keywords

Navigation