Skip to main content
Log in

Substrate ambiguity among the nudix hydrolases: biologically significant, evolutionary remnant, or both?

  • Visions and reflections
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Many members of the nudix hydrolase family exhibit considerable substrate multispecificity and ambiguity, which raises significant issues when assessing their functions in vivo and gives rise to errors in database annotation. Several display low antimutator activity when expressed in bacterial tester strains as well as some degree of activity in vitro towards mutagenic, oxidized nucleotides such as 8-oxo-dGTP. However, many of these show greater activity towards other nucleotides such as ADP-ribose or diadenosine tetraphosphate (Ap4A). The antimutator activities have tended to gain prominence in the literature, whereas they may in fact represent the residual activity of an ancestral antimutator enzyme that has become secondary to the more recently evolved major activity after gene duplication. Whether any meaningful antimutagenic function has also been retained in vivo requires very careful assessment. Then again, other examples of substrate ambiguity may indicate as yet unexplored regulatory systems. For example, bacterial Ap4A hydrolases also efficiently remove pyrophosphate from the 5′ termini of mRNAs, suggesting a potential role for Ap4A in the control of bacterial mRNA turnover, while the ability of some eukaryotic mRNA decapping enzymes to degrade IDP and dIDP or diphosphoinositol polyphosphates (DIPs) may also be indicative of new regulatory networks in RNA metabolism. DIP phosphohydrolases also degrade diadenosine polyphosphates and inorganic polyphosphates, suggesting further avenues for investigation. This article uses these and other examples to highlight the need for a greater awareness of the possible significance of substrate ambiguity among the nudix hydrolases as well as the need to exert caution when interpreting incomplete analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hult K, Berglund P (2007) Enzyme promiscuity: mechanism and applications. Trends Biotechnol 25:231–238

    PubMed  CAS  Google Scholar 

  2. Khersonsky O, Roodveldt C, Tawfik DS (2006) Enzyme promiscuity: evolutionary and mechanistic aspects. Curr Opin Chem Biol 10:498–508

    PubMed  CAS  Google Scholar 

  3. Khersonsky O, Tawfik DS (2010) Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem 79:471–505

    PubMed  CAS  Google Scholar 

  4. O’Brien PJ, Herschlag D (1999) Catalytic promiscuity and the evolution of new enzymatic activities. Chem Biol 6:R91–R105

    PubMed  Google Scholar 

  5. Gould SM, Tawfik DS (2005) Directed evolution of the promiscuous esterase activity of carbonic anhydrase II. Biochemistry 44:5444–5452

    PubMed  CAS  Google Scholar 

  6. Copley SD (2003) Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr Opin Chem Biol 7:265–272

    PubMed  CAS  Google Scholar 

  7. O’Brien PJ, Herschlag D (2001) Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase. Biochemistry 40:5691–5699

    PubMed  Google Scholar 

  8. Jensen RA (1976) Enzyme recruitment in evolution of new function. Annu Rev Microbiol 30:409–425

    PubMed  CAS  Google Scholar 

  9. Schmidt DMZ, Mundorff EC, Dojka M et al (2003) Evolutionary potential of (β/α)8-barrels: functional promiscuity produced by single substitutions in the enolase superfamily. Biochemistry 42:8387–8393

    PubMed  CAS  Google Scholar 

  10. Varadarajan N, Gam J, Olsen MJ et al (2005) Engineering of protease variants exhibiting high catalytic activity and exquisite substrate selectivity. Proc Natl Acad Sci USA 102:6855–6860

    PubMed  CAS  Google Scholar 

  11. James LC, Tawfik DS (2003) Conformational diversity and protein evolution – a 60-year-old hypothesis revisited. Trends Biochem Sci 28:361–368

    PubMed  CAS  Google Scholar 

  12. McLennan AG (2006) The Nudix hydrolase superfamily. Cell Mol Life Sci 63:123–143

    PubMed  CAS  Google Scholar 

  13. Mildvan AS, Xia Z, Azurmendi HF et al (2005) Structures and mechanisms of Nudix hydrolases. Arch Biochem Biophys 433:129–143

    PubMed  CAS  Google Scholar 

  14. Kraszewska E (2008) The plant Nudix hydrolase family. Acta Biochim Pol 55:663–671

    PubMed  CAS  Google Scholar 

  15. Bessman MJ, Frick DN, O’Handley SF (1996) The MutT proteins or “nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J Biol Chem 271:25059–25062

    PubMed  CAS  Google Scholar 

  16. Fisher DI, Cartwright JL, Harashima H et al (2004) Characterization of a Nudix hydrolase from Deinococcus radiodurans with a marked specificity for (deoxy)ribonucleoside 5′-diphosphates. BMC Biochem 5:7

    PubMed  Google Scholar 

  17. Hori M, Fujikawa K, Kasai H et al (2005) Dual hydrolysis of diphosphate and triphosphate derivatives of oxidized deoxyadenosine by Orf17 (NtpA), a MutT-type enzyme. DNA Repair 4:33–39

    PubMed  CAS  Google Scholar 

  18. Ito R, Hayakawa H, Sekiguchi M et al (2005) Multiple enzyme activities of Escherichia coli MutT protein for sanitization of DNA and RNA precursor pools. Biochemistry 44:6670–6674

    PubMed  CAS  Google Scholar 

  19. Xu WL, Jones CR, Dunn CA et al (2004) Gene ytkD of Bacillus subtilis encodes an atypical nucleoside triphosphatase member of the Nudix hydrolase superfamily. J Bacteriol 186:8380–8384

    PubMed  CAS  Google Scholar 

  20. Safrany ST, Caffrey JJ, Yang XN et al (1998) A novel context for the ‘MutT’ module, a guardian of cell integrity, in a diphosphoinositol polyphosphate phosphohydrolase. EMBO J 17:6599–6607

    PubMed  CAS  Google Scholar 

  21. Safrany ST, Ingram SW, Cartwright JL et al (1999) The diadenosine hexaphosphate hydrolases from Schizosaccharomyces pombe and Saccharomyces cerevisiae are homologues of the human diphosphoinositol polyphosphate phosphohydrolase – overlapping substrate specificities in a MutT-type protein. J Biol Chem 274:21735–21740

    PubMed  CAS  Google Scholar 

  22. Fisher DI, Safrany ST, Strike P et al (2002) Nudix hydrolases that degrade dinucleoside and diphosphoinositol polyphosphates also have 5-phosphoribosyl 1-pyrophosphate (PRPP) pyrophosphatase activity that generates the glycolytic activator ribose 1,5-bisphosphate. J Biol Chem 277:47313–47317

    PubMed  CAS  Google Scholar 

  23. Lawhorn BG, Gerdes SY, Begley TP (2004) A genetic screen for the identification of thiamin metabolic genes. J Biol Chem 279:43555–43559

    PubMed  CAS  Google Scholar 

  24. Klaus SMJ, Wegkamp A, Sybesma W et al (2005) A nudix enzyme removes pyrophosphate from dihydroneopterin triphosphate in the folate synthesis pathway of bacteria and plants. J Biol Chem 280:5274–5280

    PubMed  CAS  Google Scholar 

  25. Gabelli SB, Bianchet MA, Xu WL et al (2007) Structure and function of the E. coli dihydroneopterin triphosphate pyrophosphatase: a nudix enzyme involved in folate biosynthesis. Structure 15:1014–1022

    PubMed  CAS  Google Scholar 

  26. Coseno M, Martin G, Berger C et al (2008) Crystal structure of the 25 kDa subunit of human cleavage factor Im. Nucleic Acids Res 36:3474–3483

    PubMed  CAS  Google Scholar 

  27. Tresaugues L, Stenmark P, Schuler H et al (2008) The crystal structure of human cleavage and polyadenylation specific factor-5 reveals a dimeric Nudix protein with a conserved catalytic site. Proteins 73:1047–1052

    PubMed  CAS  Google Scholar 

  28. Koonin EV (1993) A highly conserved sequence motif defining the family of MutT-related proteins from eubacteria, eukaryotes and viruses. Nucleic Acids Res 21:4847

    PubMed  CAS  Google Scholar 

  29. Ooga T, Yoshiba S, Nakagawa N et al (2005) Molecular mechanism of the Thermus thermophilus ADP-ribose pyrophosphatase from mutational and kinetic studies. Biochemistry 44:9320–9329

    PubMed  CAS  Google Scholar 

  30. Fowler RG, Schaaper RM (1997) The role of the mutT gene of Escherichia coli in maintaining replication fidelity. FEMS Microbiol Rev 21:43–54

    PubMed  CAS  Google Scholar 

  31. Batra VK, Beard WA, Hou EW et al (2010) Mutagenic conformation of 8-oxo-7,8-dihydro-2′-dGTP in the confines of a DNA polymerase active site. Nat Struct Mol Biol 17:889–890

    PubMed  CAS  Google Scholar 

  32. Nakamura T, Meshitsuka S, Kitagawa S et al (2010) Structural and dynamic features of the MutT protein in the recognition of nucleotides with the mutagenic 8-oxoguanine base. J Biol Chem 285:444–452

    PubMed  CAS  Google Scholar 

  33. Saraswat V, Azurmendi HF, Mildvan AS (2004) Mutational, NMR, and NH exchange studies of the tight and selective binding of 8-oxo-dGMP by the MutT pyrophosphohydrolase. Biochemistry 43:3404–3414

    PubMed  CAS  Google Scholar 

  34. Setoyama D, Ito R, Takagi Y et al (2011) Molecular actions of Escherichia coli MutT for control of spontaneous mutagenesis. Mutat Res 707:9–14

    PubMed  CAS  Google Scholar 

  35. Kamiya H, Suzuki A, Kawai K et al (2007) Effects of 8-hydroxy-GTP and 2-hydroxy-ATP on in vitro transcription. Free Radic Biol Med 43:837–843

    PubMed  CAS  Google Scholar 

  36. Taddei F, Hayakawa H, Bouton M-F et al (1997) Counteraction by MutT protein of transcriptional errors caused by oxidative damage. Science 278:128–130

    PubMed  CAS  Google Scholar 

  37. Kamiya H, Ishiguro C, Harashima H (2004) Increased A:T → C:G mutations in the mutT strain upon 8-hydroxy-dGTP treatment: direct evidence for MutT involvement in the prevention of mutations by oxidized dGTP. J Biochem 136:359–362

    PubMed  CAS  Google Scholar 

  38. Kamiya H (2010) Mutagenicity of oxidized DNA precursors in living cells: roles of nucleotide pool sanitization and DNA repair enzymes, and translesion synthesis DNA polymerases. Mutat Res 703:32–36

    PubMed  CAS  Google Scholar 

  39. Tassotto ML, Mathews CK (2002) Assessing the metabolic function of the MutT 8-oxodeoxyguanosine triphosphatase in Escherichia coli by nucleotide pool analysis. J Biol Chem 277:15807–15812

    PubMed  CAS  Google Scholar 

  40. Rotman E, Kuzminov A (2007) The mutT defect does not elevate chromosomal fragmentation in Escherichia coli because of the surprisingly low levels of MutM/MutY-recognized DNA modifications. J Bacteriol 189:6976–6988

    PubMed  CAS  Google Scholar 

  41. Hori M, Asanuma T, Inanami O et al (2006) Effects of overexpression and antisense RNA expression of Orf17, a MutT-type enzyme. Biol Pharm Bull 29:1087–1091

    PubMed  CAS  Google Scholar 

  42. Gerdes SY, Scholle MD, Campbell JW et al (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185:5673–5684

    PubMed  CAS  Google Scholar 

  43. McLennan AG (2007) Folate synthesis: an old enzyme identified. Structure 15:891–892

    PubMed  CAS  Google Scholar 

  44. Fujikawa K, Kasai H (2002) The oxidized pyrimidine ribonucleotide, 5-hydroxy-CTP, is hydrolyzed efficiently by the Escherichia coli recombinant Orf135 protein. DNA Repair 1:571–576

    PubMed  CAS  Google Scholar 

  45. Iida E, Satou K, Mishima M et al (2005) Amino acid residues involved in substrate recognition of the Escherichia coli Orf 135 protein. Biochemistry 44:5683–5689

    PubMed  CAS  Google Scholar 

  46. O’Handley SF, Dunn CA, Bessman MJ (2001) Orf135 from Escherichia coli is a nudix hydrolase specific for CTP, dCTP, and 5-methyl-dCTP. J Biol Chem 276:5421–5426

    PubMed  Google Scholar 

  47. Fujikawa K, Kamiya H, Kasa H (1998) The mutations induced by oxidatively damaged nucleotides, 5-formyl-dUTP and 5-hydroxy-dCTP in Escherichia coli. Nucleic Acids Res 26:4582–4587

    PubMed  CAS  Google Scholar 

  48. Kamiya H, Iida E, Murata-Kamiya N et al (2003) Suppression of spontaneous and hydrogen peroxide-induced mutations by a MutT-type nucleotide pool sanitization enzyme, the Escherichia coli Orf135 protein. Genes Cells 8:941–950

    PubMed  CAS  Google Scholar 

  49. Kellinger MW, Song CX, Chong J et al (2012) 5-Formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of RNA polymerase II transcription. Nat Struct Mol Biol 19:831–833

    PubMed  CAS  Google Scholar 

  50. Ramirez MI, Castellanos-Juarez FX, Yasbin RE et al (2004) The ytkD (mutTA) gene of Bacillus subtilis encodes a functional antimutator 8-oxo-(dGTP/GTP)ase and is under dual control of sigma A and sigma F RNA polymerases. J Bacteriol 186:1050–1059

    PubMed  CAS  Google Scholar 

  51. Richards J, Liu Q, Pellegrini O et al (2011) An RNA pyrophosphohydrolase triggers 5′-exonucleolytic degradation of mRNA in Bacillus subtilis. Mol Cell 43:940–949

    PubMed  CAS  Google Scholar 

  52. Fujikawa K, Kamiya H, Yakushiji H et al (1999) The oxidized forms of dATP are substrates for the human MutT homologue, the hMTH1 protein. J Biol Chem 274:18201–18205

    PubMed  CAS  Google Scholar 

  53. Fujikawa K, Kamiya H, Yakushiji H et al (2001) Human MTH1 protein hydrolyzes the oxidized ribonucleotide, 2-hydroxy-ATP. Nucleic Acids Res 29:449–454

    PubMed  CAS  Google Scholar 

  54. Nakabeppu Y, Oka S, Sheng Z et al (2010) Programmed cell death triggered by nucleotide pool damage and its prevention by MutT homolog-1 (MTH1) with oxidized purine nucleoside triphosphatase. Mutat Res 703:51–58

    PubMed  CAS  Google Scholar 

  55. Rai P (2010) Oxidation in the nucleotide pool, the DNA damage response and cellular senescence: defective bricks build a defective house. Mutat Res 703:71–81

    PubMed  CAS  Google Scholar 

  56. Ventura I, Russo MT, De Luca G et al (2010) Oxidized purine nucleotides, genome instability and neurodegeneration. Mutat Res 703:59–65

    PubMed  CAS  Google Scholar 

  57. Nakabeppu Y, Kajitani K, Sakamoto K et al (2006) MTH1, an oxidized purine nucleoside triphosphatase, prevents the cytotoxicity and neurotoxicity of oxidized purine nucleotides. DNA Repair 5:761–772

    PubMed  CAS  Google Scholar 

  58. Tsuzuki T, Egashira A, Kura S (2001) Analysis of MTH1 gene function in mice with targeted mutagenesis. Mutat Res 477:71–78

    PubMed  CAS  Google Scholar 

  59. Tsuzuki T, Egashira A, Igarashi H et al (2001) Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase. Proc Natl Acad Sci USA 98:11456–11461

    PubMed  CAS  Google Scholar 

  60. Rai P, Young JJ, Burton DG et al (2011) Enhanced elimination of oxidized guanine nucleotides inhibits oncogenic RAS-induced DNA damage and premature senescence. Oncogene 30:1489–1496

    PubMed  CAS  Google Scholar 

  61. Egashira A, Yamauchi K, Yoshiyama K et al (2002) Mutational specificity of mice defective in the MTH1 and/or the MSH2 genes. DNA Repair 1:881–893

    PubMed  CAS  Google Scholar 

  62. Hori M, Satou K, Harashima H et al (2010) Suppression of mutagenesis by 8-hydroxy-2′-deoxyguanosine 5′-triphosphate (7,8-dihydro-8-oxo-2′-deoxyguanosine 5′-triphosphate) by human MTH1, MTH2, and NUDT5. Free Radic Biol Med 48:1197–1201

    PubMed  CAS  Google Scholar 

  63. Rai P (2012) Human Mut T homolog 1 (MTH1): a roadblock for the tumor-suppressive effects of oncogenic RAS-induced ROS. Small GTPases 3:120–125

    PubMed  Google Scholar 

  64. Svensson LM, Jemth AS, Desroses M et al (2011) Crystal structure of human MTH1 and the 8-oxo-dGMP product complex. FEBS Lett 585:2617–2621

    PubMed  CAS  Google Scholar 

  65. Josephy PD (2000) The Escherichia coli lacZ reversion mutagenicity assay. Mutat Res 455:71–80

    PubMed  CAS  Google Scholar 

  66. Cai JP, Ishibashi T, Takagi Y et al (2003) Mouse MTH2 protein which prevents mutations caused by 8-oxoguanine nucleotides. Biochem Biophys Res Commun 305:1073–1077

    PubMed  CAS  Google Scholar 

  67. Takagi Y, Setoyama D, Ito R et al (2012) Human MTH3 (NUDT18) protein hydrolyzes oxidized forms of guanosine and deoxyguanosine diphosphates: comparison with MTH1 and MTH2. J Biol Chem 287:21541–21549

    PubMed  CAS  Google Scholar 

  68. Yoshimura K, Ogawa T, Ueda Y et al (2007) AtNUDX1, an 8-oxo-7,8-dihydro-2′-deoxyguanosine 5′-triphosphate pyrophosphohydrolase, is responsible for eliminating oxidized nucleotides in Arabidopsis. Plant Cell Physiol 48:1438–1449

    PubMed  CAS  Google Scholar 

  69. Yu Y, Cai JP, Tu B et al (2009) Proliferating cell nuclear antigen is protected from degradation by forming a complex with MutT Homolog2. J Biol Chem 284:19310–19320

    PubMed  CAS  Google Scholar 

  70. Sanada U, Yonekura S-I, Kikuchi M et al (2011) NDX-1 protein hydrolyses 8-oxo-7,8-dihydrodeoxyguanosine-5′-diphosphate to sanitize oxidized nucleotides and prevent oxidative stress in Caenorhabditis elegans. J Biochem 150:649–657

    PubMed  CAS  Google Scholar 

  71. Yang HJ, Slupska MM, Wei YF et al (2000) Cloning and characterization of a new member of the nudix hydrolases from human and mouse. J Biol Chem 275:8844–8853

    PubMed  CAS  Google Scholar 

  72. Gasmi L, Cartwright JL, McLennan AG (1999) Cloning, expression and characterization of YSA1H, a human adenosine 5′-diphosphosugar pyrophosphatase possessing a MutT motif. Biochem J 344:331–337

    PubMed  CAS  Google Scholar 

  73. Ribeiro JM, Carloto A, Costas MJ et al (2001) Human placenta hydrolases active on free ADP-ribose: an ADP-sugar pyrophosphatase and a specific ADP-ribose pyrophosphatase. Biochim Biophys Acta 1526:86–94

    PubMed  CAS  Google Scholar 

  74. Dunn CA, O’Handley SF, Frick DN et al (1999) Studies on the ADP-ribose pyrophosphatase subfamily of the Nudix hydrolases and tentative identification of trgB, a gene associated with tellurite resistance. J Biol Chem 274:32318–32324

    PubMed  CAS  Google Scholar 

  75. Moreno-Bruna B, Baroja-Fernandez E, Muñoz FJ et al (2001) Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli. Proc Natl Acad Sci USA 98:8128–8132

    PubMed  CAS  Google Scholar 

  76. Muñoz FJ, Baroja-Fernandez E, Moran-Zorzano MT et al (2006) Cloning, expression and characterization of a Nudix hydrolase that catalyzes the hydrolytic breakdown of ADP-glucose linked to starch biosynthesis in Arabidopsis thaliana. Plant Cell Physiol 47:926–934

    PubMed  Google Scholar 

  77. Muñoz FJ, Baroja-Fernandez E, Ovecka M et al (2008) Plastidial localization of a potato nudix hydrolase of ADP-glucose linked to starch biosynthesis. Plant Cell Physiol 49:1734–1746

    PubMed  Google Scholar 

  78. Tong L, Lee S, Denu JM (2009) Hydrolase regulates NAD+ metabolites and modulates cellular redox. J Biol Chem 284:11256–11266

    PubMed  CAS  Google Scholar 

  79. Formentini L, Macchiarulo A, Cipriani G et al (2009) Poly(ADP-ribose) catabolism triggers AMP-dependent mitochondrial energy failure. J Biol Chem 284:17668–17676

    PubMed  CAS  Google Scholar 

  80. Ishibashi T, Hayakawa H, Ito R et al (2005) Mammalian enzymes for preventing transcriptional errors caused by oxidative damage. Nucleic Acids Res 33:3779–3784

    PubMed  CAS  Google Scholar 

  81. Ishibashi T, Hayakawa H, Sekiguchi M (2003) A novel mechanism for preventing mutations caused by oxidation of guanine nucleotides. EMBO Rep 4:479–483

    PubMed  CAS  Google Scholar 

  82. Kamiya H, Hori M, Arimori T et al (2009) NUDT5 hydrolyzes oxidized deoxyribonucleoside diphosphates with broad substrate specificity. DNA Repair 8:1250–1254

    PubMed  CAS  Google Scholar 

  83. Arczewska KD, Baumeier C, Kassahun H et al (2011) Caenorhabditis elegans NDX-4 is a MutT-type enzyme that contributes to genomic stability. DNA Repair 10:176–187

    PubMed  CAS  Google Scholar 

  84. Arimori T, Tamaoki H, Nakamura T et al (2011) Diverse substrate recognition and hydrolysis mechanisms of human NUDT5. Nucleic Acids Res 39:8972–8983

    PubMed  CAS  Google Scholar 

  85. Ito R, Sekiguchi M, Setoyama D et al (2011) Cleavage of oxidized guanine nucleotide and ADP sugar by human NUDT5 protein. J Biochem 149:731–738

    PubMed  CAS  Google Scholar 

  86. Zhang LQ, Dai DP, Gan W et al (2012) Lowered nudix type 5 (NUDT5) expression leads to cell cycle retardation in HeLa cells. Mol Cell Biochem 363:377–384

    PubMed  CAS  Google Scholar 

  87. Sheikh S, O’Handley SF, Dunn CA et al (1998) Identification and characterization of the Nudix hydrolase from the archaeon, Methanococcus jannaschii, as a highly specific ADP-ribose pyrophosphatase. J Biol Chem 273:20924–20928

    PubMed  CAS  Google Scholar 

  88. Guranowski A (2000) Specific and nonspecific enzymes involved in the catabolism of mononucleoside and dinucleoside polyphosphates. Pharmacol Ther 87:117–139

    PubMed  CAS  Google Scholar 

  89. Abdelghany HM, Bailey S, Blackburn GM et al (2003) Analysis of the catalytic and binding residues of the diadenosine tetraphosphate pyrophosphohydrolase from Caenorhabditis elegans by site-directed mutagenesis. J Biol Chem 278:4435–4439

    PubMed  CAS  Google Scholar 

  90. Abdelghany HM, Gasmi L, Cartwright JL et al (2001) Cloning, characterisation and crystallisation of a diadenosine 5′,5′′′-P1, P4-tetraphosphate pyrophosphohydrolase from Caenorhabditis elegans. Biochim Biophys Acta 1550:27–36

    PubMed  CAS  Google Scholar 

  91. Bailey S, Sedelnikova SE, Blackburn GM et al (2002) The crystal structure of diadenosine tetraphosphate hydrolase from Caenorhabditis elegans in free and binary complex forms. Structure 10:589–600

    PubMed  CAS  Google Scholar 

  92. McLennan AG (2000) Dinucleoside polyphosphates – friend or foe? Pharmacol Ther 87:73–89

    PubMed  CAS  Google Scholar 

  93. Abdelghany HM (2003) Cloning, expression and mutational analysis of recombinant diadenosine tetraphosphate hydrolase from Caenorhabditis elegans. School of Biological Sciences. University of Liverpool, p 234

  94. Carmi-Levy I, Yannay-Cohen N, Kay G et al (2008) Diadenosine tetraphosphate hydrolase is part of the transcriptional regulation network in immunologically activated mast cells. Mol Cell Biol 28:5777–5784

    PubMed  CAS  Google Scholar 

  95. Lee Y-N, Razin E (2005) Nonconventional involvement of LysRS in the molecular mechanism of USF2 transcriptional activity in FcεRI-activated mast cells. Mol Cell Biol 25:8904–8912

    PubMed  CAS  Google Scholar 

  96. Jansson K, Blomberg A, Sunnerhagen P et al (2010) Evolutionary loss of 8-oxo-G repair components among eukaryotes. Genome Integr 1:12

    PubMed  Google Scholar 

  97. Hazra TK, Hill JW, Izumi T et al (2001) Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in vivo functions. Prog Nucleic Acid Res Mol Biol 68:193–205

    PubMed  CAS  Google Scholar 

  98. Nunoshiba T, Ishida R, Sasaki M et al (2004) A novel Nudix hydrolase for oxidized purine nucleoside triphosphates encoded by ORFYLR151c (PCD1 gene) in Saccharomyces cerevisiae. Nucleic Acids Res 32:5339–5348

    PubMed  CAS  Google Scholar 

  99. Cartwright JL, Gasmi L, Spiller DG et al (2000) The Saccharomyces cerevisiae PCD1 gene encodes a peroxisomal nudix hydrolase active towards coenzyme A and its derivatives. J Biol Chem 275:32925–32930

    PubMed  CAS  Google Scholar 

  100. Ito D, Yoshimura K, Ishikawa K et al (2012) A comparative analysis of the molecular characteristics of the Arabidopsis CoA pyrophosphohydrolases AtNUDX11, 15, and 15a. Biosci Biotechnol Biochem 76:139–147

    PubMed  CAS  Google Scholar 

  101. Chu C, Alapat D, Wen XP et al (2004) Ectopic expression of murine diphosphoinositol polyphosphate phosphohydrolase 1 attenuates signaling through the ERK1/2 pathway. Cell Signal 16:1045–1059

    PubMed  CAS  Google Scholar 

  102. Li AW, Too CKL, Knee R et al (1997) FGF-2 antisense RNA encodes a nuclear protein with MutT-like antimutator activity. Mol Cell Endocrinol 133:177–182

    PubMed  Google Scholar 

  103. Tremblay LW, Dunaway-Mariano D, Allen KN (2006) Structure and activity analyses of Escherichia coli K-12 NagD provide insight into the evolution of biochemical function in the haloalkanoic acid dehalogenase superfamily. Biochemistry 45:1183–1193

    PubMed  CAS  Google Scholar 

  104. Kumar D, Abdulovic AL, Viberg J et al (2011) Mechanisms of mutagenesis in vivo due to imbalanced dNTP pools. Nucleic Acids Res 39:1360–1371

    PubMed  CAS  Google Scholar 

  105. Kunz BA, Kohalmi SE, Kunkel TA et al (1994) Deoxyribonucleoside triphosphate levels: a critical factor in the maintenance of genetic stability. Mutat Res 318:1–64

    PubMed  CAS  Google Scholar 

  106. Rampazzo C, Miazzi C, Franzolin E et al (2010) Regulation by degradation, a cellular defense against deoxyribonucleotide pool imbalances. Mutat Res 703:2–10

    PubMed  CAS  Google Scholar 

  107. Steyert SR, Messing SAJ, Amzel LM et al (2008) Identification of Bdellovibrio bacteriovorus HD100 Bd0714 as a nudix dGTPase. J Bacteriol 190:8215–8219

    PubMed  CAS  Google Scholar 

  108. Buchko GW, Edwards TE, Abendroth J et al (2011) Structure of a Nudix hydrolase (MutT) in the Mg2+-bound state from Bartonella henselae, the bacterium responsible for cat scratch fever. Acta Crystallogr Sect F 67:1078–1083

    Google Scholar 

  109. Dos Vultos T, Blazquez J, Rauzier J et al (2006) Identification of nudix hydrolase family members with an antimutator role in Mycobacterium tuberculosis and Mycobacterium smegmatis. J Bacteriol 188:3159–3161

    PubMed  Google Scholar 

  110. Moreland NJ, Charlier C, Dingley AJ et al (2009) Making sense of a missense mutation: characterization of MutT2, a nudix hydrolase from Mycobacterium tuberculosis, and the G58R mutant encoded in W-Beijing strains of M. tuberculosis. Biochemistry 48:699–708

    PubMed  CAS  Google Scholar 

  111. Osburne MS, Holmbeck BM, Frias-Lopez J et al (2010) UV hyper-resistance in Prochlorococcus MED4 results from a single base pair deletion just upstream of an operon encoding nudix hydrolase and photolyase. Environ Microbiol 12:1978–1988

    PubMed  CAS  Google Scholar 

  112. Yonekura SI, Sanada U, Zhang-Akiyama QM (2010) CiMutT, an asidian MutT homologue, has a 7, 8-dihydro-8-oxo-dGTP pyrophosphohydrolase activity responsible for sanitization of oxidized nucleotides in Ciona intestinalis. Genes Genet Sys 85:287–295

    CAS  Google Scholar 

  113. Engelhardt BE, Jordan MI, Srouji JR et al (2011) Genome-scale phylogenetic function annotation of large and diverse protein families. Genome Res 21:1969–1980

    PubMed  CAS  Google Scholar 

  114. Fowler RG, White SJ, Koyama C et al (2003) Interactions among the Escherichia coli mutT, mutM, and mutY damage prevention pathways. DNA Repair 2:159–173

    PubMed  CAS  Google Scholar 

  115. Vidmar JJ, Cupples CG (1993) MutY repair is mutagenic in mutT - strains of Escherichia coli. Can J Microbiol 39:892–894

    PubMed  CAS  Google Scholar 

  116. Messing SAJ, Gabelli SB, Liu QS et al (2009) Structure and biological function of the RNA pyrophosphohydrolase BdRppH from Bdellovibrio bacteriovorus. Structure 17:472–481

    PubMed  CAS  Google Scholar 

  117. Cartwright JL, Britton P, Minnick MF et al (1999) The ialA invasion gene of Bartonella bacilliformis encodes a (di)nucleoside polyphosphate hydrolase of the MutT motif family and has homologs in other invasive bacteria. Biochem Biophys Res Commun 256:474–479

    PubMed  CAS  Google Scholar 

  118. Gaywee J, Xu WL, Radulovic S et al (2002) The Rickettsia prowazekii invasion gene homolog (invA) encodes a Nudix hydrolase active on adenosine (5′)-pentaphospho-(5′)-adenosine. Mol Cell Proteomics 1:179–185

    PubMed  CAS  Google Scholar 

  119. Ismail T, Hart CA, McLennan AG (2003) Regulation of dinucleoside polyphosphate pools by the YgdP and ApaH hydrolases is essential for the ability of Salmonella enterica serovar Typhimurium to invade cultured mammalian cells. J Biol Chem 278:32602–32607

    PubMed  CAS  Google Scholar 

  120. Lundin A, Nilsson C, Gerhard M et al (2003) The NudA protein in the gastric pathogen Helicobacter pylori is an ubiquitous and constitutively expressed dinucleoside polyphosphate hydrolase. J Biol Chem 278:12574–12578

    PubMed  CAS  Google Scholar 

  121. Urick T, I-Chang C, Arena E et al (2005) The pnhA gene of Pasteurella multocida encodes a dinucleoside oligophosphate pyrophosphatase member of the nudix hydrolase superfamily. J Bacteriol 187:5809–5817

    PubMed  CAS  Google Scholar 

  122. Bessman MJ, Walsh JD, Dunn CA et al (2001) The gene ygdP, associated with the invasiveness of Escherichia coli K1, designates a nudix hydrolase, Orf176, active on adenosine (5′)-pentaphospho-(5′)-adenosine (Ap5A). J Biol Chem 276:37834–37838

    PubMed  CAS  Google Scholar 

  123. Edelstein PH, Hu BF, Shinzato T et al (2005) Legionella pneumophila NudA is a nudix hydrolase and virulence factor. Infect Immun 73:6567–6576

    PubMed  CAS  Google Scholar 

  124. Deana A, Celesnik H, Belasco JG (2008) The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature 451:355–359

    PubMed  CAS  Google Scholar 

  125. Butland G, Peregrin-Alvarez JM, Li J et al (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433:531–537

    PubMed  CAS  Google Scholar 

  126. Nazemof N (2009) yciL, yfgB, ygdP and ybcJ are novel genes that affect the process of protein synthesis in Escherichia coli. Dissertation. Carleton University, Ottawa, p 95

  127. Blanchin-Roland S, Blanquet S, Schmitter JM et al (1986) The gene for Escherichia coli diadenosine tetraphosphatase is located immediately clockwise to folA and forms an operon with ksgA. Mol Gen Genet 205:515–522

    PubMed  CAS  Google Scholar 

  128. Li S, Armstrong CM, Bertin N et al (2004) A map of the interactome network of the metazoan C. elegans. Science 303:540–543

    PubMed  CAS  Google Scholar 

  129. Zhang HB, Alramini H, Tran V et al (2011) Nucleus-localized antisense small RNAs with 5′-polyphosphate termini regulate long term transcriptional gene silencing in Entamoeba histolytica G3 strain. J Biol Chem 286:44467–44479

    PubMed  CAS  Google Scholar 

  130. Chen YG, Kowtoniuk WE, Agarwal I et al (2009) LC/MS analysis of cellular RNA reveals NAD-linked RNA. Nat Chem Biol 5:879–881

    PubMed  CAS  Google Scholar 

  131. Kowtoniuk WE, Shen Y, Heemstra JM et al (2009) A chemical screen for biological small molecule-RNA conjugates reveals CoA-linked RNA. Proc Natl Acad Sci USA 106:7768–7773

    PubMed  CAS  Google Scholar 

  132. Bail S, Kiledjian M (2009) Tri- to be mono- for bacterial mRNA decay. Structure 17:317–319

    PubMed  CAS  Google Scholar 

  133. Ghosh T, Peterson B, Tomasevic N et al (2004) Xenopus U8 snoRNA binding protein is a conserved nuclear decapping enzyme. Mol Cell 13:817–828

    PubMed  CAS  Google Scholar 

  134. Taylor MJ, Peculis BA (2008) Evolutionary conservation supports ancient origin for Nudt16, a nuclear-localized, RNA-binding, RNA-decapping enzyme. Nucleic Acids Res 36:6021–6034

    PubMed  CAS  Google Scholar 

  135. Lu G, Zhang J, Li Y et al (2011) hNUDT16: a universal decapping enzyme for small nucleolar RNA and cytoplasmic mRNA. Protein Cell 2:64–73

    PubMed  CAS  Google Scholar 

  136. Peculis BA, Reynolds K, Cleland M (2007) Metal determines efficiency and substrate specificity of the nuclear NUDIX decapping proteins X29 and H29 K (Nudt16). J Biol Chem 282:24792–24805

    PubMed  CAS  Google Scholar 

  137. Song MG, Li Y, Kiledjian M (2010) Multiple mRNA decapping enzymes in mammalian cells. Mol Cell 40:423–432

    PubMed  CAS  Google Scholar 

  138. Iyama T, Abolhassani N, Tsuchimoto D et al (2010) NUDT16 is a (deoxy)inosine diphosphatase, and its deficiency induces accumulation of single-strand breaks in nuclear DNA and growth arrest. Nucleic Acids Res 38:4834–4843

    PubMed  CAS  Google Scholar 

  139. Abolhassani N, Iyama T, Tsuchimoto D et al (2010) NUDT16 and ITPA play a dual protective role in maintaining chromosome stability and cell growth by eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals. Nucleic Acids Res 38:2891–2903

    PubMed  CAS  Google Scholar 

  140. Decker CJ, Parker R (2002) mRNA decay enzymes: decappers conserved between yeast and mammals. Proc Natl Acad Sci USA 99:12512–12514

    PubMed  CAS  Google Scholar 

  141. Dunckley T, Parker R (1999) The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J 18:5411–5422

    PubMed  CAS  Google Scholar 

  142. Piccirillo C, Khanna R, Kiledjian M (2003) Functional characterization of the mammalian mRNA decapping enzyme hDcp2. RNA 9:1138–1147

    PubMed  CAS  Google Scholar 

  143. Geisler S, Coller J (2010) Alternate endings: a new story for mRNA decapping. Mol Cell 40:349–350

    PubMed  CAS  Google Scholar 

  144. Li Y, Song MG, Kiledjian M (2008) Transcript-specific decapping and regulated stability by the human Dcp2 decapping protein. Mol Cell Biol 28:939–948

    PubMed  CAS  Google Scholar 

  145. Parrish S, Hurchalla M, Liu SW et al (2009) The African swine fever virus g5R protein possesses mRNA decapping activity. Virology 393:177–182

    PubMed  CAS  Google Scholar 

  146. Cartwright JL, Safrany ST, Dixon LK et al (2002) The g5R (D250) gene of African swine fever virus encodes a nudix hydrolase that preferentially degrades diphosphoinositol polyphosphates. J Virol 76:1415–1421

    PubMed  CAS  Google Scholar 

  147. Barker CJ, Illies C, Gaboardi GC et al (2009) Inositol pyrophosphates: structure, enzymology and function. Cell Mol Life Sci 66:3851–3871

    PubMed  CAS  Google Scholar 

  148. Burton A, Hu XW, Saiardi A (2009) Are inositol pyrophosphates signalling molecules? J Cell Physiol 220:8–15

    PubMed  CAS  Google Scholar 

  149. Shears SB (2009) Diphosphoinositol polyphosphates: metabolic messengers? Mol Pharmacol 76:236–252

    PubMed  CAS  Google Scholar 

  150. Shears SB, Gokhale NA, Wang HC et al (2011) Diphosphoinositol polyphosphates: what are the mechanisms? Adv Enzyme Regul 51:13–25

    PubMed  CAS  Google Scholar 

  151. McLennan AG (2007) Decapitation: poxvirus makes RNA lose its head. Trends Biochem Sci 32:297–299

    PubMed  CAS  Google Scholar 

  152. Duong-Ly KC, Gabelli SB, Xu WL et al (2011) The nudix hydrolase CDP-Chase, a CDP-choline pyrophosphatase, is an asymmetric dimer with two distinct enzymatic activities. J Bacteriol 193:3175–3185

    PubMed  CAS  Google Scholar 

  153. Cartwright JL, McLennan AG (1999) The Saccharomyces cerevisiae YOR163w gene encodes a diadenosine 5′,5′′′-P1, P6-hexaphosphate hydrolase member of the MutT motif (nudix hydrolase) family. J Biol Chem 274:8604–8610

    PubMed  CAS  Google Scholar 

  154. Ingram SW, Stratemann SA, Barnes LD (1999) Schizosaccharomyces pombe Aps1, a diadenosine 5′,5′′′-P1, P6- hexaphosphate hydrolase that is a member of the nudix (MutT) family of hydrolases: cloning of the gene and characterization of the purified enzyme. Biochemistry 38:3649–3655

    PubMed  CAS  Google Scholar 

  155. Caffrey JJ, Safrany ST, Yang XN et al (2000) Discovery of molecular and catalytic diversity among human diphosphoinositol-polyphosphate phosphohydrolases – an expanding NUDT family. J Biol Chem 275:12730–12736

    PubMed  CAS  Google Scholar 

  156. Hidaka K, Caffrey JJ, Hua L et al (2002) An adjacent pair of human NUDT genes on chromosome X are preferentially expressed in testis and encode two new isoforms of diphosphoinositol polyphosphate phosphohydrolase. J Biol Chem 277:32730–32738

    PubMed  CAS  Google Scholar 

  157. Leslie NR, McLennan AG, Safrany ST (2002) Cloning and characterisation of hAps1 and hAps2, human diadenosine polyphosphate-metabolising Nudix hydrolases. BMC Biochem 3:20

    PubMed  Google Scholar 

  158. Winward L, Whitfield WGF, McLennan AG et al (2010) Oxidation of the diphosphoinositol polyphosphate phosphohydrolase-like Nudix hydrolase Aps from Drosophila melanogaster induces thermolability – a possible regulatory switch? Int J Biochem Cell Biol 42:1174–1181

    PubMed  CAS  Google Scholar 

  159. Garza JA, Ilangovan U, Hinck AP et al (2009) Kinetic, dynamic, ligand binding properties, and structural models of a dual-substrate specific nudix hydrolase from Schizosaccharomyces pombe. Biochemistry 48:6224–6239

    PubMed  CAS  Google Scholar 

  160. Yang XN, Safrany ST, Shears SB (1999) Site-directed mutagenesis of diphosphoinositol polyphosphate phosphohydrolase, a dual specificity NUDT enzyme that attacks diadenosine polyphosphates and diphosphoinositol polyphosphates. J Biol Chem 274:35434–35440

    PubMed  CAS  Google Scholar 

  161. Bhandari R, Chakraborty A, Snyder SH (2007) Inositol pyrophosphate pyrotechnics. Cell Metab 5:321–323

    PubMed  CAS  Google Scholar 

  162. Lonetti A, Szijgyarto Z, Bosch D et al (2011) Identification of an evolutionarily conserved family of inorganic polyphosphate endopolyphosphatases. J Biol Chem 286:31966–31974

    PubMed  CAS  Google Scholar 

  163. Jankowski V, van der Giet M, Mischak H et al (2009) Dinucleoside polyphosphates: strong endogenous agonists of the purinergic system. Br J Pharmacol 157:1142–1153

    PubMed  CAS  Google Scholar 

  164. Ingram SW, Safrany ST, Barnes LD (2003) Disruption and overexpression of the Schizosaccharomyces pombe aps1 gene, and effects on growth rate, morphology and intracellular diadenosine 5′,5′′′-P1, P5-pentaphosphate and diphosphoinositol polyphosphate concentrations. Biochem J 369:519–528

    PubMed  CAS  Google Scholar 

  165. Hua LV, Hidaka K, Pesesse X et al (2003) Paralogous murine Nudt10 and Nudt11 genes have differential expression patterns but encode identical proteins that are physiologically competent diphosphoinositol polyphosphate phosphohydrolases. Biochem J 373:81–89

    PubMed  CAS  Google Scholar 

  166. Dobrzanska M, Szurmak B, Wyslouch-Cieszynska A et al (2002) Cloning and characterization of the first member of the Nudix family from Arabidopsis thaliana. J Biol Chem 277:50482–50486

    PubMed  CAS  Google Scholar 

  167. Szurmak B, Wyslouch-Cieszynska A, Wszelaka-Rylik M et al (2008) A diadenosine 5′,5″′-P1P4 tetraphosphate (Ap4A) hydrolase from Arabidopsis thaliana that is activated preferentially by Mn2+ ions. Acta Biochim Pol 55:151–160

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander G. McLennan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLennan, A.G. Substrate ambiguity among the nudix hydrolases: biologically significant, evolutionary remnant, or both?. Cell. Mol. Life Sci. 70, 373–385 (2013). https://doi.org/10.1007/s00018-012-1210-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1210-3

Keywords

Navigation