Skip to main content
Log in

Structural basis of bacterial defense against g-type lysozyme-based innate immunity

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Gram-negative bacteria can produce specific proteinaceous inhibitors to defend themselves against the lytic action of host lysozymes. So far, four different lysozyme inhibitor families have been identified. Here, we report the crystal structure of the Escherichia coli periplasmic lysozyme inhibitor of g-type lysozyme (PliG-Ec) in complex with Atlantic salmon g-type lysozyme (SalG) at a resolution of 0.95 Å, which is exceptionally high for a complex of two proteins. The structure reveals for the first time the mechanism of g-type lysozyme inhibition by the PliG family. The latter contains two specific conserved regions that are essential for its inhibitory activity. The inhibitory complex formation is based on a double ‘key-lock’ mechanism. The first key-lock element is formed by the insertion of two conserved PliG regions into the active site of the lysozyme. The second element is defined by a distinct pocket of PliG accommodating a lysozyme loop. Computational analysis indicates that this pocket represents a suitable site for small molecule binding, which opens an avenue for the development of novel antibacterial agents that suppress the inhibitory activity of PliG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Callewaert L, Michiels CW (2010) Lysozymes in the animal kingdom. J Biosci 35(1):127–160

    Article  PubMed  CAS  Google Scholar 

  2. Goto T et al (2007) Crystal structure of Tapes japonica Lysozyme with substrate analogue: structural basis of the catalytic mechanism and manifestation of its chitinase activity accompanied by quaternary structural change. J Biol Chem 282(37):27459–27467

    Article  PubMed  CAS  Google Scholar 

  3. Holler E, Rupley JA, Hess GP (1975) Productive and unproductive lysozyme–chitosaccharide complexes. Equilibrium measurements. Biochemistry 14(5):1088–1094

    Article  PubMed  CAS  Google Scholar 

  4. Honda Y, Fukamizo T (1998) Substrate binding subsites of chitinase from barley seeds and lysozyme from goose egg white. Biochim Biophys Acta 1388(1):53–65

    Article  PubMed  CAS  Google Scholar 

  5. Vocadlo DJ et al (2001) Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 412(6849):835–838

    Article  PubMed  CAS  Google Scholar 

  6. Malcolm BA et al (1989) Site-directed mutagenesis of the catalytic residues Asp-52 and Glu-35 of chicken egg white lysozyme. Proc Natl Acad Sci USA 86(1):133–137

    Article  PubMed  CAS  Google Scholar 

  7. Kuroki R, Weaver LH, Matthews BW (1999) Structural basis of the conversion of T4 lysozyme into a transglycosidase by reengineering the active site. Proc Natl Acad Sci USA 96(16):8949–8954

    Article  PubMed  CAS  Google Scholar 

  8. Kawamura S et al (2006) Experimental verification of the crucial roles of Glu73 in the catalytic activity and structural stability of goose type lysozyme. J Biochem 140(1):75–85

    Article  PubMed  CAS  Google Scholar 

  9. Helland R et al (2009) Crystal structures of g-type lysozyme from Atlantic cod shed new light on substrate binding and the catalytic mechanism. Cell Mol Life Sci 66(15):2585–2598

    Article  PubMed  CAS  Google Scholar 

  10. Davis KM, Weiser JN (2011) Modifications to the peptidoglycan backbone help bacteria to establish infection. Infect Immun 79(2):562–570

    Article  PubMed  CAS  Google Scholar 

  11. Callewaert L et al (2012) Guards of the great wall: bacterial lysozyme inhibitors. Trends Microbiol 20(10):501–510

    Google Scholar 

  12. Monchois V et al (2001) Escherichia coli ykfE ORFan gene encodes a potent inhibitor of C-type lysozyme. J Biol Chem 276(21):18437–18441

    Article  PubMed  CAS  Google Scholar 

  13. Callewaert L et al (2005) Purification of Ivy, a lysozyme inhibitor from Escherichia coli, and characterisation of its specificity for various lysozymes. Enzyme Microb Technol 37:205–211

    Article  CAS  Google Scholar 

  14. Nilsen IW et al (2003) Urochordates carry multiple genes for goose-type lysozyme and no genes for chicken- or invertebrate-type lysozymes. Cell Mol Life Sci 60(10):2210–2218

    Article  PubMed  CAS  Google Scholar 

  15. Kyomuhendo P et al (2008) Structural evidence for lack of inhibition of fish goose-type lysozymes by a bacterial inhibitor of lysozyme. J Mol Model 14(9):777–788

    Article  PubMed  CAS  Google Scholar 

  16. Callewaert L et al (2008) A new family of lysozyme inhibitors contributing to lysozyme tolerance in gram-negative bacteria. PLoS Pathog 4(3):e1000019

    Article  PubMed  Google Scholar 

  17. Van Herreweghe JM et al (2010) Lysozyme inhibitor conferring bacterial tolerance to invertebrate type lysozyme. Cell Mol Life Sci 67:1177–1188

    Article  PubMed  CAS  Google Scholar 

  18. Vanderkelen L et al (2011) Identification of a bacterial inhibitor against g-type lysozyme. Cell Mol Life Sci CMLS 68(6):1053–1064

    Article  CAS  Google Scholar 

  19. Abergel C et al (2007) Structure and evolution of the Ivy protein family, unexpected lysozyme inhibitors in Gram-negative bacteria. Proc Natl Acad Sci USA 104(15):6394–6399

    Article  PubMed  CAS  Google Scholar 

  20. Yum S et al (2009) Structural basis for the recognition of lysozyme by MliC, a periplasmic lysozyme inhibitor in Gram-negative bacteria. Biochem Biophys Res Commun 378(2):244–248

    Article  PubMed  CAS  Google Scholar 

  21. Voet A et al (2011) Structure based discovery of small molecule suppressors targeting bacterial lysozyme inhibitors. Biochem Biophys Res Commun 405(4):527–532

    Article  PubMed  CAS  Google Scholar 

  22. Leysen S et al (2011) Molecular basis of bacterial defense against host lysozymes: X-ray structures of periplasmic lysozyme inhibitors PliI and PliC. J Mol Biol 405(5):1233–1245

    Article  PubMed  CAS  Google Scholar 

  23. Leysen S et al (2012) Structural characterization of the PliG lysozyme inhibitor family. J Struct Biol 180(1):235–242

    Google Scholar 

  24. Kyomuhendo P, Myrnes B, Nilsen IW (2007) A cold-active salmon goose-type lysozyme with high heat tolerance. Cell Mol Life Sci 64(21):2841–2847

    Article  PubMed  CAS  Google Scholar 

  25. Mueller-Dieckmann C et al (2007) On the routine use of soft X-rays in macromolecular crystallography. Part IV. Efficient determination of anomalous substructures in biomacromolecules using longer X-ray wavelengths. Acta Crystallogr D Biol Crystallogr 63(Pt 3):366–380

    Article  PubMed  Google Scholar 

  26. Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66(Pt 2): 125–32

  27. Karplus PA, Diederichs K (2012) Linking crystallographic model and data quality. Science 336(6084):1030–1033

    Article  PubMed  CAS  Google Scholar 

  28. Rosenthal PB, Henderson R (2003) Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J Mol Biol 333(4):721–745

    Article  PubMed  CAS  Google Scholar 

  29. Evans P (2006) Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 62(Pt 1):72–82

    Article  PubMed  Google Scholar 

  30. Kyomuhendo P et al (2010) Thermodynamics and structure of a salmon cold active goose-type lysozyme. Comp Biochem Physiol B Biochem Mol Biol 156(4):254–263

    Article  PubMed  Google Scholar 

  31. McCoy AJ et al (2007) Phaser crystallographic software. J Appl Crystallogr 40(Pt 4):658–674

    Article  PubMed  CAS  Google Scholar 

  32. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallographica D, Biol Crystallogr 60(Pt 12 Pt 1):2126–32

  33. Adams PD et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66(Pt 2):213–221

    Article  PubMed  Google Scholar 

  34. Davis IW et al (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35(Web Server issue):W375–W383

    Article  PubMed  Google Scholar 

  35. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372(3):774–797

    Article  PubMed  CAS  Google Scholar 

  36. Petoukhov MV et al (2007) ATSAS 2.1—towards automated and web-supported small-angle scattering data analysis. J Appl Crystallogr 40(s1): s223–s228

    Google Scholar 

  37. Svergun D, Barberato C, Koch MHJ (1995) CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28(6):768–773

    Article  CAS  Google Scholar 

  38. Vanderkelen L et al (2011) Identification of a bacterial inhibitor against g-type lysozyme. Cell Mol Life Sci 68(6):1053–1064

    Article  PubMed  CAS  Google Scholar 

  39. Pettersen EF et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  PubMed  CAS  Google Scholar 

  40. Weaver LH, Grutter MG, Matthews BW (1995) The refined structures of goose lysozyme and its complex with a bound trisaccharide show that the “goose-type” lysozymes lack a catalytic aspartate residue. J Mol Biol 245(1):54–68

    Article  PubMed  CAS  Google Scholar 

  41. Schmidtke P, Barril X (2010) Understanding and predicting druggability. A high-throughput method for detection of drug binding sites. J Med Chem 53(15):5858–5867

    Article  PubMed  CAS  Google Scholar 

  42. Kantardjieff KA, Rupp B (2003) Matthews coefficient probabilities: improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein Sci 12(9):1865–1871

    Article  PubMed  CAS  Google Scholar 

  43. Wahlgren WY et al (2011) The catalytic aspartate is protonated in the Michaelis complex formed between trypsin and an in vitro evolved substrate-like inhibitor: a refined mechanism of serine protease action. J Biol Chem 286(5):3587–3596

    Article  PubMed  CAS  Google Scholar 

  44. Van Herreweghe JM et al (2010) Lysozyme inhibitor conferring bacterial tolerance to invertebrate type lysozyme. Cell Mol Life Sci 67(7):1177–1188

    Article  PubMed  CAS  Google Scholar 

  45. Huang P et al (2011) Characterization and expression of HLysG2, a basic goose-type lysozyme from the human eye and testis. Mol Immunol 48(4):524–531

    Article  PubMed  CAS  Google Scholar 

  46. Angulo FJ, Nargund VN, Chiller TC (2004) Evidence of an association between use of anti-microbial agents in food animals and anti-microbial resistance among bacteria isolated from humans and the human health consequences of such resistance. J Vet Med B Infect Dis Vet Public Health 51(8–9):374–379

    Article  PubMed  CAS  Google Scholar 

  47. Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8(7):1137–1144

    Article  PubMed  CAS  Google Scholar 

  48. Gille C, Frommel C (2001) STRAP: editor for STRuctural alignments of proteins. Bioinformatics 17(4):377–378

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Access to the synchrotron beamlines PROXIMA1 at Soleil and X33 at the Deutsches Elektronen-Synchrotron is gratefully acknowledged, with a special ‘thank you’ to Dr. Andrew Thompson for help with ultrahigh-resolution data collection. We also thank Dr. Pavel Afonine for advice on crystallographic refinement. S. Leysen holds a doctoral grant from the K.U. Leuven. L. Vanderkelen holds a doctoral fellowship from the Flemish Institute for the Promotion of Scientific Technological Research (IWT). This work was further financially supported by a Research Grant (G.0363.08) from the Research Foundation-Flanders (F.W.O.-Vlaanderen) and from the KU Leuven Research Fund (research project METH/07/03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Strelkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leysen, S., Vanderkelen, L., Weeks, S.D. et al. Structural basis of bacterial defense against g-type lysozyme-based innate immunity. Cell. Mol. Life Sci. 70, 1113–1122 (2013). https://doi.org/10.1007/s00018-012-1184-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1184-1

Keywords

Navigation