Skip to main content
Log in

Extensive characterization of sphere models established from colorectal cancer cell lines

  • Research article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Links between cancer and stem cells have been proposed for many years. As the cancer stem cell (CSC) theory became widely studied, new methods were developed to culture and expand cancer cells with conserved determinants of “stemness”. These cells show increased ability to grow in suspension as spheres in serum-free medium supplemented with growth factors and chemicals. The physiological relevance of this phenomenon in established cancer cell lines remains unclear. Cell lines have traditionally been used to explore tumor biology and serve as preclinical models for the screening of potential therapeutic agents. Here, we grew cell-forming spheres (CFS) from 25 established colorectal cancer cell lines. The molecular and cellular characteristics of CFS were compared to the bulk of tumor cells. CFS could be isolated from 72 % of the cell lines. Both CFS and their parental CRC cell lines were highly tumorigenic. Compared to their parental cells, they showed similar expression of putative CSC markers. The ability of CRC cells to grow as CFS was greatly enhanced by prior treatment with 5-fluorouracil. At the molecular level, CFS and parental CRC cells showed identical gene mutations and very similar genomic profiles, although microarray analysis revealed changes in CFS gene expression that were independent of DNA copy-number. We identified a CFS gene expression signature common to CFS from all CRC cell lines, which was predictive of disease relapse in CRC patients. In conclusion, CFS models derived from CRC cell lines possess interesting phenotypic features that may have clinical relevance for drug resistance and disease relapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

5-FU:

5-Fluorouracil

CFS:

Cell-forming-spheres

CIN:

Chromosomal instability

CRC:

Colorectal cancer

CSC:

Cancer stem cells

DFS:

Disease-free survival

MMR:

Mismatch-repair

MSI:

Microsatellite instability

MSS:

Microsatellite stability

References

  1. Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A, Gulotta G, Medema JP, Stassi G (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1(4):389–402. doi:10.1016/j.stem.2007.08.001

    Article  PubMed  CAS  Google Scholar 

  2. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110. doi:10.1038/nature05372

    Article  PubMed  Google Scholar 

  3. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115. doi:10.1038/nature05384

    Article  PubMed  CAS  Google Scholar 

  4. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111. doi:10.1038/3510216735102167

    Article  PubMed  CAS  Google Scholar 

  5. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5(4):275–284. doi:10.1038/nrc1590

    Article  PubMed  CAS  Google Scholar 

  6. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P, Metzeler KH, Poeppl A, Ling V, Beyene J, Canty AJ, Danska JS, Bohlander SK, Buske C, Minden MD, Golub TR, Jurisica I, Ebert BL, Dick JE (2011) Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 17(9):1086–1093. doi:10.1038/nm.2415

    Article  PubMed  CAS  Google Scholar 

  7. Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF (2004) Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 14(1):43–47. doi:10.1016/j.gde.2003.11.007

    Article  PubMed  CAS  Google Scholar 

  8. Medema JP, Vermeulen L (2011) Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature 474(7351):318–326. doi:10.1038/nature10212

    Article  PubMed  CAS  Google Scholar 

  9. Liu Y, Bodmer WF (2006) Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines. Proc Natl Acad Sci USA 103(4):976–981. doi:10.1073/pnas.0510146103

    Article  PubMed  CAS  Google Scholar 

  10. Volchenboum SL, Li C, Li S, Attiyeh EF, Reynolds CP, Maris JM, Look AT, George RE (2009) Comparison of primary neuroblastoma tumors and derivative early-passage cell lines using genome-wide single nucleotide polymorphism array analysis. Cancer Res 69(10):4143–4149. doi:10.1158/0008-5472.CAN-08-3112

    Article  PubMed  CAS  Google Scholar 

  11. Douglas EJ, Fiegler H, Rowan A, Halford S, Bicknell DC, Bodmer W, Tomlinson IP, Carter NP (2004) Array comparative genomic hybridization analysis of colorectal cancer cell lines and primary carcinomas. Cancer Res 64(14):4817–4825. doi:10.1158/0008-5472

    Article  PubMed  CAS  Google Scholar 

  12. Willson JK, Bittner GN, Oberley TD, Meisner LF, Weese JL (1987) Cell culture of human colon adenomas and carcinomas. Cancer Res 47(10):2704–2713

    PubMed  CAS  Google Scholar 

  13. Kondo T (2007) Stem cell-like cancer cells in cancer cell lines. Cancer Biomark 3(4–5):245–250

    PubMed  CAS  Google Scholar 

  14. Yeung TM, Gandhi SC, Wilding JL, Muschel R, Bodmer WF (2010) Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci USA 107(8):3722–3727. doi:10.1073/pnas.0915135107

    Article  PubMed  CAS  Google Scholar 

  15. Dittfeld C, Dietrich A, Peickert S, Hering S, Baumann M, Grade M, Ried T, Kunz-Schughart LA (2009) CD133 expression is not selective for tumor-initiating or radioresistant cell populations in the CRC cell lines HCT-116. Radiother Oncol 92(3):353–361. doi:10.1016/j.radonc.2009.06.034

    Article  PubMed  CAS  Google Scholar 

  16. Kai K, Nagano O, Sugihara E, Arima Y, Sampetrean O, Ishimoto T, Nakanishi M, Ueno NT, Iwase H, Saya H (2009) Maintenance of HCT116 colon cancer cell line conforms to a stochastic model but not a cancer stem cell model. Cancer Sci 100(12):2275–2282. doi:10.1111/j.1349-7006.2009.01318.x

    Article  PubMed  CAS  Google Scholar 

  17. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    Article  PubMed  CAS  Google Scholar 

  18. Lobo NA, Shimono Y, Qian D, Clarke MF (2007) The biology of cancer stem cells. Annu Rev Cell Dev Biol 23:675–699. doi:10.1146/annurev.cellbio.22.010305.104154

    Article  PubMed  CAS  Google Scholar 

  19. Fan X, Ouyang N, Teng H, Yao H (2011) Isolation and characterization of spheroid cells from the HT29 colon cancer cell line. Int J Colorectal Dis 26(10):1279–1285. doi:10.1007/s00384-011-1248-y

    Article  PubMed  Google Scholar 

  20. Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, Perez Alea M, Richel DJ, Stassi G, Medema JP (2008) Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA 105(36):13427–13432. doi:10.1073/pnas.0805706105

    Article  PubMed  CAS  Google Scholar 

  21. Jung P, Sato T, Merlos-Suarez A, Barriga FM, Iglesias M, Rossell D, Auer H, Gallardo M, Blasco MA, Sancho E, Clevers H, Batlle E (2011) Isolation and in vitro expansion of human colonic stem cells. Nat Med 17(10):1225–1227. doi:10.1038/nm.2470

    Article  PubMed  CAS  Google Scholar 

  22. Lengauer C, Kinzler KW, Vogelstein B (1997) Genetic instability in colorectal cancers. Nature 386(6625):623–627. doi:10.1038/386623a0

    Article  PubMed  CAS  Google Scholar 

  23. Duval A, Hamelin R (2002) Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res 62(9):2447–2454

    PubMed  CAS  Google Scholar 

  24. Pino MS, Chung DC (2010) The chromosomal instability pathway in colon cancer. Gastroenterology 138(6):2059–2072. doi:10.1053/j.gastro.2009.12.065

    Article  PubMed  CAS  Google Scholar 

  25. Smith JJ, Deane NG, Wu F, Merchant NB, Zhang B, Jiang A, Lu P, Johnson JC, Schmidt C, Bailey CE, Eschrich S, Kis C, Levy S, Washington MK, Heslin MJ, Coffey RJ, Yeatman TJ, Shyr Y, Beauchamp RD (2010) Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. Gastroenterology 138(3):958–968. doi:10.1053/j.gastro.2009.11.005

    Article  PubMed  CAS  Google Scholar 

  26. Jorissen RN, Gibbs P, Christie M, Prakash S, Lipton L, Desai J, Kerr D, Aaltonen LA, Arango D, Kruhoffer M, Orntoft TF, Andersen CL, Gruidl M, Kamath VP, Eschrich S, Yeatman TJ, Sieber OM (2009) Metastasis-associated gene expression changes predict poor outcomes in patients with Dukes stage B and C colorectal cancer. Clin Cancer Res 15(24):7642–7651. doi:10.1158/1078-0432.CCR-09-1431

    Article  PubMed  CAS  Google Scholar 

  27. Spinola M, Leoni V, Pignatiello C, Conti B, Ravagnani F, Pastorino U, Dragani TA (2005) Functional FGFR4 Gly388Arg polymorphism predicts prognosis in lung adenocarcinoma patients. J Clin Oncol 23(29):7307–7311. doi:10.1200/JCO.2005.17.350

    Article  PubMed  CAS  Google Scholar 

  28. Kang HC, Kim IJ, Park JH, Shin Y, Ku JL, Jung MS, Yoo BC, Kim HK, Park JG (2004) Identification of genes with differential expression in acquired drug-resistant gastric cancer cells using high-density oligonucleotide microarrays. Clin Cancer Res 10(1 Pt 1):272–284

    Article  PubMed  CAS  Google Scholar 

  29. Hayakawa I, Shioya R, Agatsuma T, Furukawa H, Sugano Y (2004) Thienopyridine and benzofuran derivatives as potent anti-tumor agents possessing different structure-activity relationships. Bioorg Med Chem Lett 14(13):3411–3414. doi:10.1016/j.bmcl.2004.04.079

    Article  PubMed  CAS  Google Scholar 

  30. Baraldi PG, Romagnoli R, Giovanna Pavani M, del Carmen Nunez M, Bingham JP, Hartley JA (2002) Benzoyl and cinnamoyl nitrogen mustard derivatives of benzoheterocyclic analogues of the tallimustine: synthesis and antitumour activity. Bioorg Med Chem 10(5):1611–1618

    Article  PubMed  CAS  Google Scholar 

  31. Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627. doi:10.1146/annurev.med.53

    Article  PubMed  CAS  Google Scholar 

  32. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7(9):1028–1034. doi:10.1038/nm0901-1028

    Article  PubMed  CAS  Google Scholar 

  33. Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I, Nomiyama K, Hosokawa K, Sakurada K, Nakagata N, Ikeda Y, Mak TW, Suda T (2004) Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431(7011):997–1002. doi:10.1038/nature02989

    Article  PubMed  CAS  Google Scholar 

  34. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760. doi:10.1038/nature05236

    Article  PubMed  CAS  Google Scholar 

  35. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783. doi:10.1038/nature07733

    Article  PubMed  CAS  Google Scholar 

  36. Merlos-Suarez A, Barriga FM, Jung P, Iglesias M, Cespedes MV, Rossell D, Sevillano M, Hernando-Momblona X, da Silva-Diz V, Munoz P, Clevers H, Sancho E, Mangues R, Batlle E (2011) The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8(5):511–524. doi:10.1016/j.stem.2011.02.020

    Article  PubMed  CAS  Google Scholar 

  37. Sinicrope FA, Foster NR, Thibodeau SN, Marsoni S, Monges G, Labianca R, Kim GP, Yothers G, Allegra C, Moore MJ, Gallinger S, Sargent DJ (2011) DNA mismatch repair status and colon cancer recurrence and survival in clinical trials of 5-fluorouracil-based adjuvant therapy. J Natl Cancer Inst 103(11):863–875. doi:10.1093/jnci/djr153

    Article  PubMed  CAS  Google Scholar 

  38. Poupon MF, Arvelo F, Goguel AF, Bourgeois Y, Jacrot M, Hanania N, Arriagada R, Le Chevalier T (1993) Response of small-cell lung cancer xenografts to chemotherapy: multidrug resistance and direct clinical correlates. J Natl Cancer Inst 85(24):2023–2029

    Article  PubMed  CAS  Google Scholar 

  39. Buhard O, Suraweera N, Lectard A, Duval A, Hamelin R (2004) Quasimonomorphic mononucleotide repeats for high-level microsatellite instability analysis. Dis Markers 20(4–5):251–257

    PubMed  Google Scholar 

  40. Gayet J, Zhou XP, Duval A, Rolland S, Hoang JM, Cottu P, Hamelin R (2001) Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines. Oncogene 20(36):5025–5032. doi:10.1038/sj.onc.1204611

    Article  PubMed  CAS  Google Scholar 

  41. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31(4):e15

    Article  PubMed  Google Scholar 

  42. Letouze E, Sow A, Petel F, Rosati R, Figueiredo BC, Burnichon N, Gimenez-Roqueplo AP, Lalli E, de Reynies A (2012) Identity by descent mapping of founder mutations in cancer using high-resolution tumor SNP data. PLoS ONE 7(5):e35897. doi:10.1371/journal.pone.0035897

    Article  PubMed  CAS  Google Scholar 

  43. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3. doi:10.2202/1544-6115.1027

Download references

Acknowledgments

This work was supported by the ‘Carte d’Identité des Tumeurs’ (CIT) program (http://cit.ligue-cancer.net) from the Ligue Nationale Contre le Cancer and by grants from the ‘Institut National du Cancer’ (INCa) (to A.D.). The A.D. group has the label “La Ligue Contre le Cancer”. A.C. is a recipient of an INCa fellowship (Institut National du Cancer). A.L. is a recipient of a MESR fellowship (Ministère de l’Enseignement Supérieur et de le Recherche.

Conflict of interest

No potential conflicts of interests were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ada Collura or Alex Duval.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collura, A., Marisa, L., Trojan, D. et al. Extensive characterization of sphere models established from colorectal cancer cell lines. Cell. Mol. Life Sci. 70, 729–742 (2013). https://doi.org/10.1007/s00018-012-1160-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1160-9

Keywords

Navigation