Skip to main content
Log in

The role of endocytosis in activating and regulating signal transduction

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Endocytosis is increasingly understood to play crucial roles in most signaling pathways, from determining which signaling components are activated, to how the signal is subsequently transduced and/or terminated. Whether a receptor-ligand complex is internalized via a clathrin-dependent or clathrin-independent endocytic route, and the complexes’ subsequent trafficking through specific endocytic compartments, to then be recycled or degraded, has profound effects on signaling output. This review discusses the roles of endocytosis in three markedly different signaling pathways: the Wnt, Notch, and Eph/Ephrin pathways. These offer fundamentally different signaling systems: (1) diffusible ligands inducing signaling in one cell, (2) membrane-tethered ligands inducing signaling in a contacting receptor cell, and (3) bi-directional receptor-ligand signaling in two contacting cells. In each of these systems, endocytosis controls signaling in fascinating ways, and comparison of their similarities and dissimilarities will help to expand our understanding of endocytic control of signal transduction across multiple signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADAM:

A disintegrin and metallo-protease

AP1/2:

Adaptor protein one or two

Arf:

ADP-ribosylation factor

Arp2/3:

Actin-related protein 2/3

Cav1/2:

Caveolin one or two

CCP:

Clathrin-coated pit

CCV:

Clathrin-coated vesicle

CDR:

Circular dorsal ruffles (also known as waves)

CE:

Convergent extension

CLASP:

Clathrin-associated sorting proteins

CLIC-GEEC:

Clathrin-independent carrier/GPI-anchored protein-enriched early endosomal compartment

CME:

Clathrin-mediated endocytosis

CSL:

CBF1/Suppressor of Hairless/LAG-1

Dll1/3/4:

Delta-like one, three or four (Notch ligands)

Dsh/Dvl:

Disheveled

EEA1:

Early endosomal antigen one

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

Fc:

Fragment crystallizable region (tail region of antibody)

Flot1/2:

Flotillin one or two

GPI:

Glycosylphosphatidylinositol

GTPase:

Guanosine triphosphate hydrolase enzyme

Hek cells:

Human embryonic kidney cells

HeLa cells:

Cervical cancer cells from Henrietta Lacks

HGF:

Hepatocyte growth factor

Jag1/2:

Jagged one or two (Notch ligands)

LacZ:

Beta-d-galactosidase

LDL:

Low-denstity lipoprotein

Lef1:

Lymphoid enhancer-binding factor 1

Lqf:

Liquid facets (Drosophila epsin homolog)

NECD:

Notch extracellular domain

NEXT:

Notch extracellular truncation

NICD:

Notch intracellular domain

N-WASP:

Neural Wiskott-Aldrich syndrome protein (aka WASL, Wiskott-Aldrich syndrome-like)

PCP:

Planar cell polarity

PDGF:

Platelet-derived growth factor

PKC:

Protein kinase C

PM:

Plasma membrane

Ptc:

Patched (Shh receptor)

Rab11:

Rab-protein 11

Rac1:

RAS-related C3 botulinum substrate 1

Rin1:

Ras and Rab interactor one

Ror1/2:

Receptor tyrosine kinase-like orphan receptor one or two

Ryk:

Receptor-like tyrosine kinase

Shh:

Sonic hedgehog

TCF:

T-cell factor

TGF-β:

Transforming growth factor beta

Vav2:

Vav 2 guanine nucleotide exchange factor

References

  1. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902

    PubMed  CAS  Google Scholar 

  2. Vieira AV, Lamaze C, Schmid SL (1996) Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274:2086–2089

    PubMed  CAS  Google Scholar 

  3. Sigismund S, Woelk T, Puri C, Maspero E, Tacchetti C, Transidico P, Di Fiore PP, Polo S (2005) Clathrin-independent endocytosis of ubiquitinated cargos. Proc Natl Acad Sci USA 102:2760–2765

    PubMed  CAS  Google Scholar 

  4. Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC et al (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452

    PubMed  CAS  Google Scholar 

  5. Galbiati F, Engelman JA, Volonte D, Zhang XL, Minetti C, Li M, Hou H Jr, Kneitz B, Edelmann W, Lisanti MP (2001) Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem 276:21425–21433

    PubMed  CAS  Google Scholar 

  6. Hagiwara Y, Sasaoka T, Araishi K, Imamura M, Yorifuji H, Nonaka I, Ozawa E, Kikuchi T (2000) Caveolin-3 deficiency causes muscle degeneration in mice. Hum Mol Genet 9:3047–3054

    PubMed  CAS  Google Scholar 

  7. Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG, Li M, Pestell RG et al (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276:38121–38138

    PubMed  CAS  Google Scholar 

  8. Razani B, Wang XB, Engelman JA, Battista M, Lagaud G, Zhang XL, Kneitz B, Hou H Jr, Christ GJ, Edelmann W et al (2002) Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol 22:2329–2344

    PubMed  CAS  Google Scholar 

  9. Mattsson CL, Andersson ER, Nedergaard J (2010) Differential involvement of caveolin-1 in brown adipocyte signaling: impaired beta3-adrenergic, but unaffected LPA, PDGF and EGF receptor signaling. Biochim Biophys Acta 1803:983–989

    PubMed  CAS  Google Scholar 

  10. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL (2003) Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 5:410–421

    PubMed  Google Scholar 

  11. Pearse BM (1976) Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sci USA 73:1255–1259

    PubMed  CAS  Google Scholar 

  12. Kirchhausen T (2000) Clathrin. Annu Rev Biochem 69:699–727

    PubMed  CAS  Google Scholar 

  13. Reider A, Wendland B (2011) Endocytic adaptors-social networking at the plasma membrane. J Cell Sci 124:1613–1622

    PubMed  CAS  Google Scholar 

  14. Pearse BM, Robinson MS (1984) Purification and properties of 100-kd proteins from coated vesicles and their reconstitution with clathrin. EMBO J 3:1951–1957

    PubMed  CAS  Google Scholar 

  15. Chen H, Fre S, Slepnev VI, Capua MR, Takei K, Butler MH, Di Fiore PP, De Camilli P (1998) Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394:793–797

    PubMed  CAS  Google Scholar 

  16. Itoh T, Koshiba S, Kigawa T, Kikuchi A, Yokoyama S, Takenawa T (2001) Role of the ENTH domain in phosphatidylinositol-4, 5-bisphosphate binding and endocytosis. Science 291:1047–1051

    PubMed  CAS  Google Scholar 

  17. Overstreet E, Fitch E, Fischer JA (2004) Fat facets and liquid facets promote delta endocytosis and delta signaling in the signaling cells. Development 131:5355–5366

    PubMed  CAS  Google Scholar 

  18. Gurevich EV, Gurevich VV (2006) Arrestins: ubiquitous regulators of cellular signaling pathways. Genome Biol 7:236

    PubMed  Google Scholar 

  19. Dho SE, French MB, Woods SA, McGlade CJ (1999) Characterization of four mammalian Numb protein isoforms. Identification of cytoplasmic and membrane-associated variants of the phosphotyrosine binding domain. J Biol Chem 274:33097–33104

    PubMed  CAS  Google Scholar 

  20. Santolini E, Puri C, Salcini AE, Gagliani MC, Pelicci PG, Tacchetti C, Di Fiore PP (2000) Numb is an endocytic protein. J Cell Biol 151:1345–1352

    PubMed  CAS  Google Scholar 

  21. Ghossoub R, Molla-Herman A, Bastin P, Benmerah A (2011) The ciliary pocket: a once-forgotten membrane domain at the base of cilia. Biol Cell 103:131–144

    PubMed  Google Scholar 

  22. Molla-Herman A, Ghossoub R, Blisnick T, Meunier A, Serres C, Silbermann F, Emmerson C, Romeo K, Bourdoncle P, Schmitt A et al (2010) The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. J Cell Sci 123:1785–1795

    PubMed  CAS  Google Scholar 

  23. Field MC, Carrington M (2009) The trypanosome flagellar pocket. Nat Rev Microbiol 7:775–786

    PubMed  CAS  Google Scholar 

  24. Hu Q, Milenkovic L, Jin H, Scott MP, Nachury MV, Spiliotis ET, Nelson WJ (2010) A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329:436–439

    PubMed  CAS  Google Scholar 

  25. Michaud EJ, Yoder BK (2006) The primary cilium in cell signaling and cancer. Cancer Res 66:6463–6467

    PubMed  CAS  Google Scholar 

  26. Tang Z, Scherer PE, Okamoto T, Song K, Chu C, Kohtz DS, Nishimoto I, Lodish HF, Lisanti MP (1996) Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271:2255–2261

    PubMed  CAS  Google Scholar 

  27. Hill MM, Bastiani M, Luetterforst R, Kirkham M, Kirkham A, Nixon SJ, Walser P, Abankwa D, Oorschot VM, Martin S et al (2008) PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132:113–124

    PubMed  CAS  Google Scholar 

  28. Liu L, Pilch PF (2008) A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. J Biol Chem 283:4314–4322

    PubMed  CAS  Google Scholar 

  29. Hansen CG, Bright NA, Howard G, Nichols BJ (2009) SDPR induces membrane curvature and functions in the formation of caveolae. Nat Cell Biol 11:807–814

    PubMed  CAS  Google Scholar 

  30. McMahon KA, Zajicek H, Li WP, Peyton MJ, Minna JD, Hernandez VJ, Luby-Phelps K, Anderson RG (2009) SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function. EMBO J 28:1001–1015

    PubMed  CAS  Google Scholar 

  31. Oh P, McIntosh DP, Schnitzer JE (1998) Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 141:101–114

    PubMed  CAS  Google Scholar 

  32. Le PU, Nabi IR (2003) Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum. J Cell Sci 116:1059–1071

    PubMed  CAS  Google Scholar 

  33. Minshall RD, Tiruppathi C, Vogel SM, Niles WD, Gilchrist A, Hamm HE, Malik AB (2000) Endothelial cell-surface gp60 activates vesicle formation and trafficking via G(i)-coupled Src kinase signaling pathway. J Cell Biol 150:1057–1070

    PubMed  CAS  Google Scholar 

  34. Parton RG, Molero JC, Floetenmeyer M, Green KM, James DE (2002) Characterization of a distinct plasma membrane macrodomain in differentiated adipocytes. J Biol Chem 277:46769–46778

    PubMed  CAS  Google Scholar 

  35. Naslavsky N, Weigert R, Donaldson JG (2003) Convergence of non-clathrin- and clathrin-derived endosomes involves Arf6 inactivation and changes in phosphoinositides. Mol Biol Cell 14:417–431

    PubMed  CAS  Google Scholar 

  36. Pelkmans L, Burli T, Zerial M, Helenius A (2004) Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118:767–780

    PubMed  CAS  Google Scholar 

  37. Meyer C, Zizioli D, Lausmann S, Eskelinen EL, Hamann J, Saftig P, von Figura K, Schu P (2000) mu1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J 19:2193–2203

    PubMed  CAS  Google Scholar 

  38. Mitsunari T, Nakatsu F, Shioda N, Love PE, Grinberg A, Bonifacino JS, Ohno H (2005) Clathrin adaptor AP-2 is essential for early embryonal development. Mol Cell Biol 25:9318–9323

    PubMed  CAS  Google Scholar 

  39. Chinkers M, McKanna JA, Cohen S (1979) Rapid induction of morphological changes in human carcinoma cells A-431 by epidermal growth factors. J Cell Biol 83:260–265

    PubMed  CAS  Google Scholar 

  40. Dowrick P, Kenworthy P, McCann B, Warn R (1993) Circular ruffle formation and closure lead to macropinocytosis in hepatocyte growth factor/scatter factor-treated cells. Eur J Cell Biol 61:44–53

    PubMed  CAS  Google Scholar 

  41. Mellstrom K, Heldin CH, Westermark B (1988) Induction of circular membrane ruffling on human fibroblasts by platelet-derived growth factor. Exp Cell Res 177:347–359

    PubMed  CAS  Google Scholar 

  42. Mellstroom K, Hoglund AS, Nister M, Heldin CH, Westermark B, Lindberg U (1983) The effect of platelet-derived growth factor on morphology and motility of human glial cells. J Muscle Res Cell Motil 4:589–609

    PubMed  CAS  Google Scholar 

  43. Peleg B, Disanza A, Scita G, Gov N (2011) Propagating cell-membrane waves driven by curved activators of actin polymerization. PLoS One 6:e18635

    PubMed  CAS  Google Scholar 

  44. Orth JD, McNiven MA (2006) Get off my back! Rapid receptor internalization through circular dorsal ruffles. Cancer Res 66:11094–11096

    PubMed  CAS  Google Scholar 

  45. Weaver AM, Karginov AV, Kinley AW, Weed SA, Li Y, Parsons JT, Cooper JA (2001) Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr Biol 11:370–374

    PubMed  CAS  Google Scholar 

  46. Hasegawa J, Tokuda E, Tenno T, Tsujita K, Sawai H, Hiroaki H, Takenawa T, Itoh T (2011) SH3YL1 regulates dorsal ruffle formation by a novel phosphoinositide-binding domain. J Cell Biol 193:901–916

    PubMed  CAS  Google Scholar 

  47. Legg JA, Bompard G, Dawson J, Morris HL, Andrew N, Cooper L, Johnston SA, Tramountanis G, Machesky LM (2007) N-WASP involvement in dorsal ruffle formation in mouse embryonic fibroblasts. Mol Biol Cell 18:678–687

    PubMed  CAS  Google Scholar 

  48. Huang M, Satchell L, Duhadaway JB, Prendergast GC, Laury-Kleintop LD (2011) RhoB links PDGF signaling to cell migration by coordinating activation and localization of Cdc42 and Rac. J Cell Biochem 112:1572–1584

    PubMed  CAS  Google Scholar 

  49. Glebov OO, Bright NA, Nichols BJ (2006) Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol 8:46–54

    PubMed  CAS  Google Scholar 

  50. Affentranger S, Martinelli S, Hahn J, Rossy J, Niggli V (2011) Dynamic reorganization of flotillins in chemokine-stimulated human T-lymphocytes. BMC Cell Biol 12:28

    PubMed  CAS  Google Scholar 

  51. Langhorst MF, Solis GP, Hannbeck S, Plattner H, Stuermer CA (2007) Linking membrane microdomains to the cytoskeleton: regulation of the lateral mobility of reggie-1/flotillin-2 by interaction with actin. FEBS Lett 581:4697–4703

    PubMed  CAS  Google Scholar 

  52. Kirkham M, Nixon SJ, Howes MT, Abi-Rached L, Wakeham DE, Hanzal-Bayer M, Ferguson C, Hill MM, Fernandez-Rojo M, Brown DA et al (2008) Evolutionary analysis and molecular dissection of caveola biogenesis. J Cell Sci 121:2075–2086

    PubMed  CAS  Google Scholar 

  53. Babuke T, Ruonala M, Meister M, Amaddii M, Genzler C, Esposito A, Tikkanen R (2009) Hetero-oligomerization of reggie-1/flotillin-2 and reggie-2/flotillin-1 is required for their endocytosis. Cell Signal 21:1287–1297

    PubMed  CAS  Google Scholar 

  54. Saslowsky DE, Cho JA, Chinnapen H, Massol RH, Chinnapen DJ, Wagner JS, De Luca HE, Kam W, Paw BH, Lencer WI (2010) Intoxication of zebrafish and mammalian cells by cholera toxin depends on the flotillin/reggie proteins but not derlin-1 or -2. J Clin Invest 120:4399–4409

    PubMed  CAS  Google Scholar 

  55. Henley JR, Krueger EW, Oswald BJ, McNiven MA (1998) Dynamin-mediated internalization of caveolae. J Cell Biol 141:85–99

    PubMed  CAS  Google Scholar 

  56. Schnitzer JE, Oh P, McIntosh DP (1996) Role of GTP hydrolysis in fission of caveolae directly from plasma membranes. Science 274:239–242

    PubMed  CAS  Google Scholar 

  57. Cremona ML, Matthies HJ, Pau K, Bowton E, Speed N, Lute BJ, Anderson M, Sen N, Robertson SD, Vaughan RA et al (2011) Flotillin-1 is essential for PKC-triggered endocytosis and membrane microdomain localization of DAT. Nat Neurosci 14:469–477

    PubMed  CAS  Google Scholar 

  58. Stuermer CA (2011) Microdomain-forming proteins and the role of the reggies/flotillins during axon regeneration in zebrafish. Biochim Biophys Acta 1812:415–422

    PubMed  CAS  Google Scholar 

  59. Cornfine S, Himmel M, Kopp P, El Azzouzi K, Wiesner C, Kruger M, Rudel T, Linder S (2011) The kinesin KIF9 and reggie/flotillin proteins regulate matrix degradation by macrophage podosomes. Mol Biol Cell 22:202–215

    PubMed  CAS  Google Scholar 

  60. Schneider A, Rajendran L, Honsho M, Gralle M, Donnert G, Wouters F, Hell SW, Simons M (2008) Flotillin-dependent clustering of the amyloid precursor protein regulates its endocytosis and amyloidogenic processing in neurons. J Neurosci 28:2874–2882

    PubMed  CAS  Google Scholar 

  61. Neumann-Giesen C, Fernow I, Amaddii M, Tikkanen R (2007) Role of EGF-induced tyrosine phosphorylation of reggie-1/flotillin-2 in cell spreading and signaling to the actin cytoskeleton. J Cell Sci 120:395–406

    PubMed  CAS  Google Scholar 

  62. Katanaev VL, Solis GP, Hausmann G, Buestorf S, Katanayeva N, Schrock Y, Stuermer CA, Basler K (2008) Reggie-1/flotillin-2 promotes secretion of the long-range signalling forms of wingless and hedgehog in Drosophila. EMBO J 27:509–521

    PubMed  CAS  Google Scholar 

  63. Chadda R, Howes MT, Plowman SJ, Hancock JF, Parton RG, Mayor S (2007) Cholesterol-sensitive Cdc42 activation regulates actin polymerization for endocytosis via the GEEC pathway. Traffic 8:702–717

    PubMed  CAS  Google Scholar 

  64. Kirkham M, Fujita A, Chadda R, Nixon SJ, Kurzchalia TV, Sharma DK, Pagano RE, Hancock JF, Mayor S, Parton RG (2005) Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J Cell Biol 168:465–476

    PubMed  CAS  Google Scholar 

  65. Sabharanjak S, Sharma P, Parton RG, Mayor S (2002) GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell 2:411–423

    PubMed  CAS  Google Scholar 

  66. Geli MI, Riezman H (1996) Role of type I myosins in receptor-mediated endocytosis in yeast. Science 272:533–535

    PubMed  CAS  Google Scholar 

  67. Rao TP, Kuhl M (2010) An updated overview on Wnt signaling pathways: a prelude for more. Circ Res 106:1798–1806

    PubMed  CAS  Google Scholar 

  68. van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development 136:3205–3214

    PubMed  Google Scholar 

  69. Inoue T, Oz HS, Wiland D, Gharib S, Deshpande R, Hill RJ, Katz WS, Sternberg PW (2004) C. elegans LIN-18 is a Ryk ortholog and functions in parallel to LIN-17/frizzled in Wnt signaling. Cell 118:795–806

    PubMed  CAS  Google Scholar 

  70. Lu W, Yamamoto V, Ortega B, Baltimore D (2004) Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 119:97–108

    PubMed  CAS  Google Scholar 

  71. Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, Koshida I, Suzuki K, Yamada G, Schwabe GC et al (2003) The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 8:645–654

    PubMed  CAS  Google Scholar 

  72. Schambony A, Wedlich D (2007) Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. Dev Cell 12:779–792

    PubMed  CAS  Google Scholar 

  73. Roszko I, Sawada A, Solnica-Krezel L (2009) Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway. Semin Cell Dev Biol 20:986–997

    PubMed  CAS  Google Scholar 

  74. Gao C, Chen YG (2010) Dishevelled: the hub of Wnt signaling. Cell Signal 22:717–727

    PubMed  CAS  Google Scholar 

  75. Dubois L, Lecourtois M, Alexandre C, Hirst E, Vincent JP (2001) Regulated endocytic routing modulates wingless signaling in Drosophila embryos. Cell 105:613–624

    PubMed  CAS  Google Scholar 

  76. Seto ES, Bellen HJ (2006) Internalization is required for proper wingless signaling in Drosophila melanogaster. J Cell Biol 173:95–106

    PubMed  CAS  Google Scholar 

  77. Blitzer JT, Nusse R (2006) A critical role for endocytosis in Wnt signaling. BMC Cell Biol 7:28

    PubMed  Google Scholar 

  78. Chen W, Hu LA, Semenov MV, Yanagawa S, Kikuchi A, Lefkowitz RJ, Miller WE (2001) beta-Arrestin1 modulates lymphoid enhancer factor transcriptional activity through interaction with phosphorylated dishevelled proteins. Proc Natl Acad Sci USA 98:14889–14894

    PubMed  CAS  Google Scholar 

  79. Bryja V, Gradl D, Schambony A, Arenas E, Schulte G (2007) Beta-arrestin is a necessary component of Wnt/beta-catenin signaling in vitro and in vivo. Proc Natl Acad Sci USA 104:6690–6695

    PubMed  CAS  Google Scholar 

  80. Yamamoto H, Komekado H, Kikuchi A (2006) Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin. Dev Cell 11:213–223

    PubMed  CAS  Google Scholar 

  81. Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, Niehrs C (2007) Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 316:1619–1622

    PubMed  CAS  Google Scholar 

  82. Li Y, Lu W, King TD, Liu CC, Bijur GN, Bu G (2010) Dkk1 stabilizes Wnt co-receptor LRP6: implication for Wnt ligand-induced LRP6 down-regulation. PLoS One 5:e11014

    PubMed  Google Scholar 

  83. Kim GH, Her JH, Han JK (2008) Ryk cooperates with frizzled 7 to promote Wnt11-mediated endocytosis and is essential for Xenopus laevis convergent extension movements. J Cell Biol 182:1073–1082

    PubMed  CAS  Google Scholar 

  84. Kim GH, Han JK (2007) Essential role for beta-arrestin 2 in the regulation of Xenopus convergent extension movements. EMBO J 26:2513–2526

    PubMed  CAS  Google Scholar 

  85. Chen W, ten Berge D, Brown J, Ahn S, Hu LA, Miller WE, Caron MG, Barak LS, Nusse R, Lefkowitz RJ (2003) Dishevelled 2 recruits beta-arrestin 2 to mediate Wnt5a-stimulated endocytosis of Frizzled 4. Science 301:1391–1394

    PubMed  CAS  Google Scholar 

  86. Yu A, Rual JF, Tamai K, Harada Y, Vidal M, He X, Kirchhausen T (2007) Association of dishevelled with the clathrin AP-2 adaptor is required for frizzled endocytosis and planar cell polarity signaling. Dev Cell 12:129–141

    PubMed  CAS  Google Scholar 

  87. Andersson ER, Prakash N, Cajanek L, Minina E, Bryja V, Bryjova L, Yamaguchi TP, Hall AC, Wurst W, Arenas E (2008) Wnt5a regulates ventral midbrain morphogenesis and the development of A9–A10 dopaminergic cells in vivo. PLoS One 3:e3517

    PubMed  Google Scholar 

  88. Sato A, Yamamoto H, Sakane H, Koyama H, Kikuchi A (2010) Wnt5a regulates distinct signalling pathways by binding to Frizzled2. EMBO J 29:41–54

    PubMed  CAS  Google Scholar 

  89. Andersson ER, Sandberg R, Lendahl U (2011) Notch signaling: simplicity in design, versatility in function. Development 138:3593–3612

    PubMed  CAS  Google Scholar 

  90. Poulson D (1937) Chromosomal deficiencies and the embryonic development of Drosophila melanogaster. PNAS 23:133–137

    PubMed  CAS  Google Scholar 

  91. Chen MS, Obar RA, Schroeder CC, Austin TW, Poodry CA, Wadsworth SC, Vallee RB (1991) Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351:583–586

    PubMed  CAS  Google Scholar 

  92. Poodry CA (1990) Shibire, a neurogenic mutant of Drosophila. Dev Biol 138:464–472

    PubMed  CAS  Google Scholar 

  93. Seugnet L, Simpson P, Haenlin M (1997) Requirement for dynamin during Notch signaling in Drosophila neurogenesis. Dev Biol 192:585–598

    PubMed  CAS  Google Scholar 

  94. Parks AL, Stout JR, Shepard SB, Klueg KM, Dos Santos AA, Parody TR, Vaskova M, Muskavitch MA (2006) Structure-function analysis of delta trafficking, receptor binding and signaling in Drosophila. Genetics 174:1947–1961

    PubMed  CAS  Google Scholar 

  95. Glittenberg M, Pitsouli C, Garvey C, Delidakis C, Bray S (2006) Role of conserved intracellular motifs in Serrate signalling, cis-inhibition and endocytosis. EMBO J 25:4697–4706

    PubMed  CAS  Google Scholar 

  96. Haglund K, Di Fiore PP, Dikic I (2003) Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem Sci 28:598–603

    PubMed  CAS  Google Scholar 

  97. Deblandre GA, Lai EC, Kintner C (2001) Xenopus neuralized is a ubiquitin ligase that interacts with XDelta1 and regulates notch signaling. Dev Cell 1:795–806

    PubMed  CAS  Google Scholar 

  98. Lai EC, Deblandre GA, Kintner C, Rubin GM (2001) Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of delta. Dev Cell 1:783–794

    PubMed  CAS  Google Scholar 

  99. Pavlopoulos E, Pitsouli C, Klueg KM, Muskavitch MA, Moschonas NK, Delidakis C (2001) Neuralized encodes a peripheral membrane protein involved in delta signaling and endocytosis. Dev Cell 1:807–816

    PubMed  CAS  Google Scholar 

  100. Yeh E, Dermer M, Commisso C, Zhou L, McGlade CJ, Boulianne GL (2001) Neuralized functions as an E3 ubiquitin ligase during Drosophila development. Curr Biol 11:1675–1679

    PubMed  CAS  Google Scholar 

  101. Chen W, Casey Corliss D (2004) Three modules of zebrafish mind bomb work cooperatively to promote delta ubiquitination and endocytosis. Dev Biol 267:361–373

    PubMed  CAS  Google Scholar 

  102. Itoh M, Kim CH, Palardy G, Oda T, Jiang YJ, Maust D, Yeo SY, Lorick K, Wright GJ, Ariza-McNaughton L et al (2003) Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by delta. Dev Cell 4:67–82

    PubMed  CAS  Google Scholar 

  103. Overstreet E, Chen X, Wendland B, Fischer JA (2003) Either part of a Drosophila epsin protein, divided after the ENTH domain, functions in endocytosis of delta in the developing eye. Curr Biol 13:854–860

    PubMed  CAS  Google Scholar 

  104. Tian X, Hansen D, Schedl T, Skeath JB (2004) Epsin potentiates Notch pathway activity in Drosophila and C. elegans. Development 131:5807–5815

    PubMed  CAS  Google Scholar 

  105. Wang W, Struhl G (2004) Drosophila Epsin mediates a select endocytic pathway that DSL ligands must enter to activate Notch. Development 131:5367–5380

    PubMed  CAS  Google Scholar 

  106. Chen H, Ko G, Zatti A, Di Giacomo G, Liu L, Raiteri E, Perucco E, Collesi C, Min W, Zeiss C et al (2009) Embryonic arrest at midgestation and disruption of Notch signaling produced by the absence of both epsin 1 and epsin 2 in mice. Proc Natl Acad Sci USA 106:13838–13843

    PubMed  CAS  Google Scholar 

  107. Windler SL, Bilder D (2010) Endocytic internalization routes required for delta/notch signaling. Curr Biol 20:538–543

    PubMed  CAS  Google Scholar 

  108. Le Borgne R, Schweisguth F (2003) Notch signaling: endocytosis makes delta signal better. Curr Biol 13:R273–R275

    PubMed  CAS  Google Scholar 

  109. Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, Laszlo V, Pallinger E, Pap E, Kittel A et al (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68:2667–2688

    PubMed  CAS  Google Scholar 

  110. Sheldon H, Heikamp E, Turley H, Dragovic R, Thomas P, Oon CE, Leek R, Edelmann M, Kessler B, Sainson RC et al (2010) New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood 116:2385–2394

    PubMed  CAS  Google Scholar 

  111. Rajan A, Tien AC, Haueter CM, Schulze KL, Bellen HJ (2009) The Arp2/3 complex and WASp are required for apical trafficking of delta into microvilli during cell fate specification of sensory organ precursors. Nat Cell Biol 11:815–824

    PubMed  CAS  Google Scholar 

  112. Emery G, Hutterer A, Berdnik D, Mayer B, Wirtz-Peitz F, Gaitan MG, Knoblich JA (2005) Asymmetric Rab 11 endosomes regulate delta recycling and specify cell fate in the Drosophila nervous system. Cell 122:763–773

    PubMed  CAS  Google Scholar 

  113. Jafar-Nejad H, Andrews HK, Acar M, Bayat V, Wirtz-Peitz F, Mehta SQ, Knoblich JA, Bellen HJ (2005) Sec15, a component of the exocyst, promotes Notch signaling during the asymmetric division of Drosophila sensory organ precursors. Dev Cell 9:351–363

    PubMed  CAS  Google Scholar 

  114. Heuss SF, Ndiaye-Lobry D, Six EM, Israel A, Logeat F (2008) The intracellular region of Notch ligands Dll1 and Dll3 regulates their trafficking and signaling activity. Proc Natl Acad Sci USA 105:11212–11217

    PubMed  CAS  Google Scholar 

  115. Parr-Sturgess CA, Rushton DJ, Parkin ET (2010) Ectodomain shedding of the Notch ligand Jagged1 is mediated by ADAM17, but is not a lipid-raft-associated event. Biochem J 432:283–294

    PubMed  CAS  Google Scholar 

  116. Hansson EM, Lanner F, Das D, Mutvei A, Marklund U, Ericson J, Farnebo F, Stumm G, Stenmark H, Andersson ER et al (2010) Control of Notch-ligand endocytosis by ligand-receptor interaction. J Cell Sci 123:2931–2942

    PubMed  CAS  Google Scholar 

  117. Nichols JT, Miyamoto A, Olsen SL, D’Souza B, Yao C, Weinmaster G (2007) DSL ligand endocytosis physically dissociates Notch1 heterodimers before activating proteolysis can occur. J Cell Biol 176:445–458

    PubMed  CAS  Google Scholar 

  118. Parks AL, Klueg KM, Stout JR, Muskavitch MA (2000) Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 127:1373–1385

    PubMed  CAS  Google Scholar 

  119. Gordon WR, Vardar-Ulu D, Histen G, Sanchez-Irizarry C, Aster JC, Blacklow SC (2007) Structural basis for autoinhibition of Notch. Nat Struct Mol Biol 14:295–300

    PubMed  CAS  Google Scholar 

  120. Sanchez-Irizarry C, Carpenter AC, Weng AP, Pear WS, Aster JC, Blacklow SC (2004) Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats. Mol Cell Biol 24:9265–9273

    PubMed  CAS  Google Scholar 

  121. Gupta-Rossi N, Six E, LeBail O, Logeat F, Chastagner P, Olry A, Israel A, Brou C (2004) Monoubiquitination and endocytosis direct gamma-secretase cleavage of activated Notch receptor. J Cell Biol 166:73–83

    PubMed  CAS  Google Scholar 

  122. Moretti J, Chastagner P, Gastaldello S, Heuss SF, Dirac AM, Bernards R, Masucci MG, Israel A, Brou C (2010) The translation initiation factor 3f (eIF3f) exhibits a deubiquitinase activity regulating Notch activation. PLoS Biol 8:e1000545

    PubMed  Google Scholar 

  123. Cayouette M, Raff M (2002) Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals. Nat Neurosci 5:1265–1269

    PubMed  CAS  Google Scholar 

  124. Gonczy P (2008) Mechanisms of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol 9:355–366

    PubMed  Google Scholar 

  125. McGill MA, Dho SE, Weinmaster G, McGlade CJ (2009) Numb regulates post-endocytic trafficking and degradation of Notch1. J Biol Chem 284:26427–26438

    PubMed  CAS  Google Scholar 

  126. Beres BJ, George R, Lougher EJ, Barton M, Verrelli BC, McGlade CJ, Rawls JA, Wilson-Rawls J (2011) Numb regulates Notch1, but not Notch3, during myogenesis. Mech Dev 128(5–6):247–257

    PubMed  CAS  Google Scholar 

  127. Diederich RJ, Matsuno K, Hing H, Artavanis-Tsakonas S (1994) Cytosolic interaction between deltex and Notch ankyrin repeats implicates deltex in the Notch signaling pathway. Development 120:473–481

    PubMed  CAS  Google Scholar 

  128. Hori K, Fostier M, Ito M, Fuwa TJ, Go MJ, Okano H, Baron M, Matsuno K (2004) Drosophila deltex mediates suppressor of hairless-independent and late-endosomal activation of Notch signaling. Development 131:5527–5537

    PubMed  CAS  Google Scholar 

  129. Matsuno K, Diederich RJ, Go MJ, Blaumueller CM, Artavanis-Tsakonas S (1995) Deltex acts as a positive regulator of Notch signaling through interactions with the Notch ankyrin repeats. Development 121:2633–2644

    PubMed  CAS  Google Scholar 

  130. Wilkin M, Tongngok P, Gensch N, Clemence S, Motoki M, Yamada K, Hori K, Taniguchi-Kanai M, Franklin E, Matsuno K et al (2008) Drosophila HOPS and AP-3 complex genes are required for a Deltex-regulated activation of notch in the endosomal trafficking pathway. Dev Cell 15:762–772

    PubMed  CAS  Google Scholar 

  131. Yamada K, Fuwa TJ, Ayukawa T, Tanaka T, Nakamura A, Wilkin MB, Baron M, Matsuno K (2011) Roles of Drosophila deltex in Notch receptor endocytic trafficking and activation. Genes Cells 16:261–272

    PubMed  CAS  Google Scholar 

  132. Fuwa TJ, Hori K, Sasamura T, Higgs J, Baron M, Matsuno K (2006) The first deltex null mutant indicates tissue-specific deltex-dependent Notch signaling in Drosophila. Mol Genet Genomics 275:251–263

    PubMed  CAS  Google Scholar 

  133. Matsuno K, Ito M, Hori K, Miyashita F, Suzuki S, Kishi N, Artavanis-Tsakonas S, Okano H (2002) Involvement of a proline-rich motif and RING-H2 finger of deltex in the regulation of Notch signaling. Development 129:1049–1059

    PubMed  CAS  Google Scholar 

  134. Mukherjee A, Veraksa A, Bauer A, Rosse C, Camonis J, Artavanis-Tsakonas S (2005) Regulation of Notch signalling by non-visual beta-arrestin. Nat Cell Biol 7:1191–1201

    PubMed  Google Scholar 

  135. Sestan N, Artavanis-Tsakonas S, Rakic P (1999) Contact-dependent inhibition of cortical neurite growth mediated by Notch signaling. Science 286:741–746

    PubMed  CAS  Google Scholar 

  136. Jorissen E, De Strooper B (2010) Gamma-secretase and the intramembrane proteolysis of Notch. Curr Top Dev Biol 92:201–230

    PubMed  CAS  Google Scholar 

  137. Kaether C, Schmitt S, Willem M, Haass C (2006) Amyloid precursor protein and Notch intracellular domains are generated after transport of their precursors to the cell surface. Traffic 7:408–415

    PubMed  CAS  Google Scholar 

  138. Sorensen EB, Conner SD (2010) Gamma-secretase-dependent cleavage initiates Notch signaling from the plasma membrane. Traffic 11:1234–1245

    PubMed  CAS  Google Scholar 

  139. Tarassishin L, Yin YI, Bassit B, Li YM (2004) Processing of Notch and amyloid precursor protein by gamma-secretase is spatially distinct. Proc Natl Acad Sci USA 101:17050–17055

    PubMed  CAS  Google Scholar 

  140. Vaccari T, Lu H, Kanwar R, Fortini ME, Bilder D (2008) Endosomal entry regulates Notch receptor activation in Drosophila melanogaster. J Cell Biol 180:755–762

    PubMed  CAS  Google Scholar 

  141. Tagami S, Okochi M, Yanagida K, Ikuta A, Fukumori A, Matsumoto N, Ishizuka-Katsura Y, Nakayama T, Itoh N, Jiang J et al (2008) Regulation of Notch signaling by dynamic changes in the precision of S3 cleavage of Notch-1. Mol Cell Biol 28:165–176

    PubMed  CAS  Google Scholar 

  142. Kapoor A, Hsu WM, Wang BJ, Wu GH, Lin TY, Lee SJ, Yen CT, Liang SM, Liao YF (2010) Caveolin-1 regulates gamma-secretase-mediated AbetaPP processing by modulating spatial distribution of gamma-secretase in membrane. J Alzheimers Dis 22:423–442

    PubMed  CAS  Google Scholar 

  143. Osenkowski P, Ye W, Wang R, Wolfe MS, Selkoe DJ (2008) Direct and potent regulation of gamma-secretase by its lipid microenvironment. J Biol Chem 283:22529–22540

    PubMed  CAS  Google Scholar 

  144. Ezratty EJ, Stokes N, Chai S, Shah AS, Williams SE, Fuchs E (2011) A role for the primary cilium in Notch signaling and epidermal differentiation during skin development. Cell 145:1129–1141

    PubMed  CAS  Google Scholar 

  145. Ahmed KA, Xiang J (2011) Mechanisms of cellular communication through intercellular protein transfer. J Cell Mol Med 15:1458–1473

    PubMed  CAS  Google Scholar 

  146. Pitulescu ME, Adams RH (2010) Eph/ephrin molecules–a hub for signaling and endocytosis. Genes Dev 24:2480–2492

    PubMed  CAS  Google Scholar 

  147. Cagan RL, Kramer H, Hart AC, Zipursky SL (1992) The bride of sevenless and sevenless interaction: internalization of a transmembrane ligand. Cell 69:393–399

    PubMed  CAS  Google Scholar 

  148. Kusakari S, Ohnishi H, Jin FJ, Kaneko Y, Murata T, Murata Y, Okazawa H, Matozaki T (2008) Trans-endocytosis of CD47 and SHPS-1 and its role in regulation of the CD47-SHPS-1 system. J Cell Sci 121:1213–1223

    PubMed  CAS  Google Scholar 

  149. Pasquale EB (2008) Eph-ephrin bidirectional signaling in physiology and disease. Cell 133:38–52

    PubMed  CAS  Google Scholar 

  150. Thakar S, Chenaux G, Henkemeyer M (2011) Critical roles for EphB and ephrin-B bidirectional signalling in retinocollicular mapping. Nat Commun 2:431

    PubMed  Google Scholar 

  151. del Alamo D, Rouault H, Schweisguth F (2011) Mechanism and significance of cis-inhibition in Notch signalling. Curr Biol 21:R40–R47

    PubMed  Google Scholar 

  152. Carvalho RF, Beutler M, Marler KJ, Knoll B, Becker-Barroso E, Heintzmann R, Ng T, Drescher U (2006) Silencing of EphA3 through a cis interaction with ephrinA5. Nat Neurosci 9:322–330

    PubMed  CAS  Google Scholar 

  153. Yin Y, Yamashita Y, Noda H, Okafuji T, Go MJ, Tanaka H (2004) EphA receptor tyrosine kinases interact with co-expressed ephrin-A ligands in cis. Neurosci Res 48:285–296

    PubMed  CAS  Google Scholar 

  154. Parker M, Roberts R, Enriquez M, Zhao X, Takahashi T, Pat Cerretti D, Daniel T, Chen J (2004) Reverse endocytosis of transmembrane ephrin-B ligands via a clathrin-mediated pathway. Biochem Biophys Res Commun 323:17–23

    PubMed  CAS  Google Scholar 

  155. Bruckner K, Pablo Labrador J, Scheiffele P, Herb A, Seeburg PH, Klein R (1999) EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron 22:511–524

    PubMed  CAS  Google Scholar 

  156. Vihanto MM, Vindis C, Djonov V, Cerretti DP, Huynh-Do U (2006) Caveolin-1 is required for signaling and membrane targeting of EphB1 receptor tyrosine kinase. J Cell Sci 119:2299–2309

    PubMed  CAS  Google Scholar 

  157. Yoo S, Shin J, Park S (2010) EphA8-ephrinA5 signaling and clathrin-mediated endocytosis is regulated by Tiam-1, a Rac-specific guanine nucleotide exchange factor. Mol Cells 29:603–609

    PubMed  CAS  Google Scholar 

  158. Irie F, Okuno M, Pasquale EB, Yamaguchi Y (2005) EphrinB-EphB signalling regulates clathrin-mediated endocytosis through tyrosine phosphorylation of synaptojanin 1. Nat Cell Biol 7:501–509

    PubMed  CAS  Google Scholar 

  159. Bouvier D, Tremblay ME, Riad M, Corera AT, Gingras D, Horn KE, Fotouhi M, Girard M, Murai KK, Kennedy TE et al (2010) EphA4 is localized in clathrin-coated and synaptic vesicles in adult mouse brain. J Neurochem 113:153–165

    PubMed  CAS  Google Scholar 

  160. Carpentier JL, Sawano F, Geiger D, Gorden P, Perrelet A, Orci L (1989) Potassium depletion and hypertonic medium reduce “non-coated” and clathrin-coated pit formation, as well as endocytosis through these two gates. J Cell Physiol 138:519–526

    PubMed  CAS  Google Scholar 

  161. Vercauteren D, Vandenbroucke RE, Jones AT, Rejman J, Demeester J, De Smedt SC, Sanders NN, Braeckmans K (2010) The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls. Mol Ther 18:561–569

    PubMed  CAS  Google Scholar 

  162. Ellis S, Mellor H (2000) Regulation of endocytic traffic by rho family GTPases. Trends Cell Biol 10:85–88

    PubMed  CAS  Google Scholar 

  163. Marston DJ, Dickinson S, Nobes CD (2003) Rac-dependent trans-endocytosis of ephrinBs regulates Eph-ephrin contact repulsion. Nat Cell Biol 5:879–888

    PubMed  CAS  Google Scholar 

  164. Cowan CW, Shao YR, Sahin M, Shamah SM, Lin MZ, Greer PL, Gao S, Griffith EC, Brugge JS, Greenberg ME (2005) Vav family GEFs link activated Ephs to endocytosis and axon guidance. Neuron 46:205–217

    PubMed  CAS  Google Scholar 

  165. Hunter SG, Zhuang G, Brantley-Sieders D, Swat W, Cowan CW, Chen J (2006) Essential role of Vav family guanine nucleotide exchange factors in EphA receptor-mediated angiogenesis. Mol Cell Biol 26:4830–4842

    PubMed  CAS  Google Scholar 

  166. Deininger K, Eder M, Kramer ER, Zieglgansberger W, Dodt HU, Dornmair K, Colicelli J, Klein R (2008) The Rab5 guanylate exchange factor Rin1 regulates endocytosis of the EphA4 receptor in mature excitatory neurons. Proc Natl Acad Sci USA 105:12539–12544

    PubMed  CAS  Google Scholar 

  167. Shamah SM, Lin MZ, Goldberg JL, Estrach S, Sahin M, Hu L, Bazalakova M, Neve RL, Corfas G, Debant A et al (2001) EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105:233–244

    PubMed  CAS  Google Scholar 

  168. Hiramoto-Yamaki N, Takeuchi S, Ueda S, Harada K, Fujimoto S, Negishi M, Katoh H (2010) Ephexin4 and EphA2 mediate cell migration through a RhoG-dependent mechanism. J Cell Biol 190:461–477

    PubMed  CAS  Google Scholar 

  169. Sahin M, Greer PL, Lin MZ, Poucher H, Eberhart J, Schmidt S, Wright TM, Shamah SM, O’Connell S, Cowan CW et al (2005) Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse. Neuron 46:191–204

    PubMed  CAS  Google Scholar 

  170. Lamaze C, Chuang TH, Terlecky LJ, Bokoch GM, Schmid SL (1996) Regulation of receptor-mediated endocytosis by Rho and Rac. Nature 382:177–179

    PubMed  CAS  Google Scholar 

  171. Lamaze C, Fujimoto LM, Yin HL, Schmid SL (1997) The actin cytoskeleton is required for receptor-mediated endocytosis in mammalian cells. J Biol Chem 272:20332–20335

    PubMed  CAS  Google Scholar 

  172. Zimmer M, Palmer A, Kohler J, Klein R (2003) EphB-ephrinB bi-directional endocytosis terminates adhesion allowing contact mediated repulsion. Nat Cell Biol 5:869–878

    PubMed  CAS  Google Scholar 

  173. Georgakopoulos A, Litterst C, Ghersi E, Baki L, Xu C, Serban G, Robakis NK (2006) Metalloproteinase/Presenilin1 processing of ephrinB regulates EphB-induced Src phosphorylation and signaling. EMBO J 25:1242–1252

    PubMed  CAS  Google Scholar 

  174. Inoue E, Deguchi-Tawarada M, Togawa A, Matsui C, Arita K, Katahira-Tayama S, Sato T, Yamauchi E, Oda Y, Takai Y (2009) Synaptic activity prompts gamma-secretase-mediated cleavage of EphA4 and dendritic spine formation. J Cell Biol 185:551–564

    PubMed  CAS  Google Scholar 

  175. Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, Blobel CP, Himanen JP, Lackmann M, Nikolov DB (2005) Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 123:291–304

    PubMed  CAS  Google Scholar 

  176. Janes PW, Wimmer-Kleikamp SH, Frangakis AS, Treble K, Griesshaber B, Sabet O, Grabenbauer M, Ting AY, Saftig P, Bastiaens PI et al (2009) Cytoplasmic relaxation of active Eph controls ephrin shedding by ADAM10. PLoS Biol 7:e1000215

    PubMed  Google Scholar 

  177. Litterst C, Georgakopoulos A, Shioi J, Ghersi E, Wisniewski T, Wang R, Ludwig A, Robakis NK (2007) Ligand binding and calcium influx induce distinct ectodomain/gamma-secretase-processing pathways of EphB2 receptor. J Biol Chem 282:16155–16163

    PubMed  CAS  Google Scholar 

  178. Tomita T, Tanaka S, Morohashi Y, Iwatsubo T (2006) Presenilin-dependent intramembrane cleavage of ephrin-B1. Mol Neurodegener 1:2

    PubMed  Google Scholar 

  179. Song JK, Giniger E (2011) Noncanonical Notch function in motor axon guidance is mediated by Rac GTPase and the GEF1 domain of Trio. Dev Dyn 240:324–332

    PubMed  Google Scholar 

  180. Schlessinger K, Hall A, Tolwinski N (2009) Wnt signaling pathways meet Rho GTPases. Genes Dev 23:265–277

    PubMed  CAS  Google Scholar 

  181. Steiner H, Fluhrer R, Haass C (2008) Intramembrane proteolysis by gamma-secretase. J Biol Chem 283:29627–29631

    PubMed  CAS  Google Scholar 

  182. Zolkiewska A (2008) ADAM proteases: ligand processing and modulation of the Notch pathway. Cell Mol Life Sci 65:2056–2068

    PubMed  CAS  Google Scholar 

  183. LaVoie MJ, Selkoe DJ (2003) The Notch ligands, jagged and delta, are sequentially processed by alpha-secretase and presenilin/gamma-secretase and release signaling fragments. J Biol Chem 278:34427–34437

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

E.R.A. thanks Professor Urban Lendahl for scientific discussions and support, and Dr. Nicolas Fritz for fruitful discussions and constructive criticism of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma R. Andersson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, E.R. The role of endocytosis in activating and regulating signal transduction. Cell. Mol. Life Sci. 69, 1755–1771 (2012). https://doi.org/10.1007/s00018-011-0877-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0877-1

Keywords

Navigation