Skip to main content

Advertisement

Log in

Melanopsin and inner retinal photoreception

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Over the last ten years there has been growing acceptance that retinal photoreception among mammals extends beyond rods and cones to include a small number of intrinsically photosensitive retinal ganglion cells (ipRGCs). These ipRGCs are capable of responding to light in the absence of rod/cone input thanks to expression of an opsin photopigment called melanopsin. They are specialised for measuring ambient levels of light (irradiance) for a wide variety of so-called non-image-forming light responses. These include synchronisation of circadian clocks to light:dark cycles and the regulation of pupil size, sleep propensity and pineal melatonin production. Here, we provide a review of some of the landmark discoveries in this fast developing field, paying particular emphasis to recent findings and key areas for future investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Takahashi JS, DeCoursey PJ, Bauman L, Menaker M (1984) Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature 308:186–188

    CAS  PubMed  Google Scholar 

  2. Foster RG, Helfrich-Forster C (2001) The regulation of circadian clocks by light in fruitflies and mice. Philos Trans R Soc Lond B 356:1779–1789

    CAS  Google Scholar 

  3. Nelson DE, Takahashi JS (1991) Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus). J Physiol 439:115–145

    CAS  PubMed  Google Scholar 

  4. von Frisch K (1911) Beiträge zur Physiologie der Pigmentellen in der Fischhaut. Pflügers Arch 138:319–387

    Google Scholar 

  5. Tamotsu S, Morita Y (1986) Photoreception in pineal organs of larval and adult lampreys, Lampetra japonica. J Comp Physiol A 159:1–5

    CAS  PubMed  Google Scholar 

  6. Taylor DH (1972) Extra-optic photoreception and compass orientation in larval and adult salamanders (Ambystoma tigrinum). Anim Behav 20:233–236

    CAS  PubMed  Google Scholar 

  7. Underwood H (1975) Extraretinal light receptors can mediate photoperiodic photoreception in male lizard Anolis carolinensis. J Comp Physiol 99:71–78

    Google Scholar 

  8. Menaker M, Roberts R, Elliott J, Underwood H (1970) Extraretinal light perception in sparrow, III: eyes do not participate in photoperiodic photoreception. Proc Natl Acad Sci USA 67:320–325

    CAS  PubMed  Google Scholar 

  9. Nelson RJ, Zucker I (1981) Photoperiodic control of reproduction in olfactory-bulbectomized rats. Neuroendocrinology 32:266–271

    CAS  PubMed  Google Scholar 

  10. Yamazaki S, Goto M, Menaker M (1999) No evidence for extraocular photoreceptors in the circadian system of the Syrian hamster. J Biol Rhythms 14:197–201

    CAS  PubMed  Google Scholar 

  11. Ebihara S, Tsuji K (1980) Entrainment of the circadian activity rhythm to the light cycle: effective light intensity for a Zeitgeber in the retinal degenerate C3H mouse and the normal C57BL mouse. Physiol Behav 24:523–527

    CAS  PubMed  Google Scholar 

  12. Foster RG, Provencio I, Hudson D, Fiske S, De Grip W, Menaker M (1991) Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol A 169:39–50

    CAS  PubMed  Google Scholar 

  13. Anderson KV, O’Steen WK (1972) Black-white and pattern discrimination in rats without photoreceptors. Exp Neurol 34:446–454

    CAS  PubMed  Google Scholar 

  14. Yoshimura T, Ebihara S (1998) Decline of circadian photosensitivity associated with retinal degeneration in CBA/J-rd/rd mice. Brain Res 779:188–193

    CAS  PubMed  Google Scholar 

  15. Argamaso SM, Froehlich AC, McCall MA, Nevo E, Provencio I, Foster RG (1995) Photopigments and circadian systems of vertebrates. Biophys Chem 56:3–11

    CAS  PubMed  Google Scholar 

  16. Garcia-Fernandez JM, Jimenez AJ, Foster RG (1995) The persistence of cone photoreceptors within the dorsal retina of aged retinally degenerate mice (rd/rd): implications for circadian organization. Neurosci Lett 187:33–36

    CAS  PubMed  Google Scholar 

  17. Provencio I, Wong S, Lederman AB, Argamaso SM, Foster RG (1994) Visual and circadian responses to light in aged retinally degenerate mice. Vision Res 34:1799–1806

    CAS  PubMed  Google Scholar 

  18. Foster RG, Argamaso S, Coleman S, Colwell CS, Lederman A, Provencio I (1993) Photoreceptors regulating circadian behavior: a mouse model. J Biol Rhythms 8(Suppl):S17–S23

    PubMed  Google Scholar 

  19. Provencio I, Cooper HM, Foster RG (1998) Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment. J Comp Neurol 395:417–439

    CAS  PubMed  Google Scholar 

  20. Czeisler CA, Shanahan TL, Klerman EB, Martens H, Brotman DJ, Emens JS, Klein T, Rizzo JF 3rd (1995) Suppression of melatonin secretion in some blind patients by exposure to bright light. N Engl J Med 332:6–11

    CAS  PubMed  Google Scholar 

  21. Lucas RJ, Freedman MS, Munoz M, Garcia-Fernandez JM, Foster RG (1999) Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284:505–507

    CAS  PubMed  Google Scholar 

  22. Freedman MS, Lucas RJ, Soni B, von Schantz M, Munoz M, David-Gray Z, Foster R (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502–504

    CAS  PubMed  Google Scholar 

  23. Lucas RJ, Douglas RH, Foster RG (2001) Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci 4:621–626

    CAS  PubMed  Google Scholar 

  24. Yoshimura T, Ebihara S (1996) Spectral sensitivity of photoreceptors mediating phase-shifts of circadian rhythms in retinally degenerate CBA/J (rd/rd) and normal CBA/N (+/+)mice. J Comp Physiol A 178:797–802

    CAS  PubMed  Google Scholar 

  25. Thapan K, Arendt J, Skene DJ (2001) An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol 535:261–267

    CAS  PubMed  Google Scholar 

  26. Brainard GC, Hanifin JP, Rollag MD, Greeson J, Byrne B, Glickman G, Gerner E, Sanford B (2001) Human melatonin regulation is not mediated by the three cone photopic visual system. J Clin Endocrinol Metab 86:433–436

    CAS  PubMed  Google Scholar 

  27. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    CAS  PubMed  Google Scholar 

  28. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073

    CAS  PubMed  Google Scholar 

  29. Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD (1998) Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci USA 95:340–345

    CAS  PubMed  Google Scholar 

  30. Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299:245–247

    CAS  PubMed  Google Scholar 

  31. Newman LA, Walker MT, Brown RL, Cronin TW, Robinson PR (2003) Melanopsin forms a functional short-wavelength photopigment. Biochemistry 42:12734–12738

    CAS  PubMed  Google Scholar 

  32. Melyan Z, Tarttelin EE, Bellingham J, Lucas RJ, Hankins MW (2005) Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433:741–745

    CAS  PubMed  Google Scholar 

  33. Qiu X, Kumbalasiri T, Carlson SM, Wong KY, Krishna V, Provencio I, Berson DM (2005) Induction of photosensitivity by heterologous expression of melanopsin. Nature 433:745–749

    CAS  PubMed  Google Scholar 

  34. Panda S, Nayak SK, Campo B, Walker JR, Hogenesch JB, Jegla T (2005) Illumination of the melanopsin signaling pathway. Science 307:600–604

    CAS  PubMed  Google Scholar 

  35. Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC, O’Hara BF (2002) Role of melanopsin in circadian responses to light. Science 298:2211–2213

    CAS  PubMed  Google Scholar 

  36. Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, Hogenesch JB, Provencio I, Kay SA (2002) Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298:2213–2216

    CAS  PubMed  Google Scholar 

  37. Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofmann F, Foster RG, Yau KW (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424:76–81

    CAS  PubMed  Google Scholar 

  38. Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT, Sato TK, Wiltshire T, Andahazy M, Kay SA, Van Gelder RN, Hogenesch JB (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301:525–527

    CAS  PubMed  Google Scholar 

  39. Provencio I, Rollag MD, Castrucci AM (2002) Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415:493

    CAS  PubMed  Google Scholar 

  40. Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD (2000) A novel human opsin in the inner retina. J Neurosci 20:600–605

    CAS  PubMed  Google Scholar 

  41. Hannibal J, Hindersson P, Knudsen SM, Georg B, Fahrenkrug J (2002) The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract. J Neurosci 22:RC191

    PubMed  Google Scholar 

  42. Hannibal J, Hindersson P, Ostergaard J, Georg B, Heegaard S, Larsen PJ, Fahrenkrug J (2004) Melanopsin is expressed in PACAP-containing retinal ganglion cells of the human retinohypothalamic tract. Invest Ophthalmol Vis Sci 45:4202–4209

    PubMed  Google Scholar 

  43. Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J, Yau KW, Gamlin PD (2005) Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433:749–754

    CAS  PubMed  Google Scholar 

  44. Dkhissi-Benyahya O, Rieux C, Hut RA, Cooper HM (2006) Immunohistochemical evidence of a melanopsin cone in human retina. Invest Ophthalmol Vis Sci 47:1636–1641

    PubMed  Google Scholar 

  45. Peirson SN, Bovee-Geurts PH, Lupi D, Jeffery G, DeGrip WJ, Foster RG (2004) Expression of the candidate circadian photopigment melanopsin (Opn4) in the mouse retinal pigment epithelium. Brain Res Mol Brain Res 123:132–135

    CAS  PubMed  Google Scholar 

  46. Vugler AA, Redgrave P, Semo M, Lawrence J, Greenwood J, Coffey PJ (2007) Dopamine neurones form a discrete plexus with melanopsin cells in normal and degenerating retina. Exp Neurol 205:26–35

    CAS  PubMed  Google Scholar 

  47. Ostergaard J, Hannibal J, Fahrenkrug J (2007) Synaptic contact between melanopsin-containing retinal ganglion cells and rod bipolar cells. Invest Ophthalmol Vis Sci 48:3812–3820

    PubMed  Google Scholar 

  48. Pickard GE, Baver SB, Ogilvie MD, Sollars PJ (2009) Light-induced fos expression in intrinsically photosensitive retinal ganglion cells in melanopsin knockout (opn4) mice. PLoS ONE 4:e4984

    PubMed  Google Scholar 

  49. Dumitrescu ON, Pucci FG, Wong F, Berson DM (2009) Ectopic ON bipolar cell synapses in the OFF inner plexiform layer. Contacts with dopaminergic amacrine cells and melanopsin ganglion cells. J Comp Neurol 517:226–244

    CAS  PubMed  Google Scholar 

  50. Hoshi H, Liu WL, Massey SC, Mills SL (2009) ON inputs to the OFF layer: bipolar cells that break the stratification rules of the retina. J Neurosci 29:8875–8883

    CAS  PubMed  Google Scholar 

  51. Wong KY, Dunn FA, Graham DM, Berson DM (2007) Synaptic influences on rat ganglion-cell photoreceptors. J Physiol 582:279–296

    CAS  PubMed  Google Scholar 

  52. Perez-Leon JA, Warren EJ, Allen CN, Robinson DW, Lane Brown R (2006) Synaptic inputs to retinal ganglion cells that set the circadian clock. Eur J Neurosci 24:1117–1123

    PubMed  Google Scholar 

  53. Viney TJ, Balint K, Hillier D, Siegert S, Boldogkoi Z, Enquist LW, Meister M, Cepko CL, Roska B (2007) Local retinal circuits of melanopsin-containing ganglion cells identified by transsynaptic viral tracing. Curr Biol 17:981–988

    CAS  PubMed  Google Scholar 

  54. Zhang DQ, Wong KY, Sollars PJ, Berson DM, Pickard GE, McMahon DG (2008) Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons. Proc Natl Acad Sci USA 105:14181–14186

    CAS  PubMed  Google Scholar 

  55. Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, Berson DM (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497:326–349

    PubMed  Google Scholar 

  56. Baver SB, Pickard GE, Sollars PJ, Pickard GE (2008) Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus. Eur J Neurosci 27:1763–1770

    PubMed  Google Scholar 

  57. Schmidt TM, Taniguchi K, Kofuji P (2008) Intrinsic and extrinsic light responses in melanopsin-expressing ganglion cells during mouse development. J Neurophysiol 100:371–384

    CAS  PubMed  Google Scholar 

  58. Schmidt TM, Kofuji P (2009) Functional and morphological differences among intrinsically photosensitive retinal ganglion cells. J Neurosci 29:476–482

    CAS  PubMed  Google Scholar 

  59. Jusuf PR, Lee SC, Hannibal J, Grunert U (2007) Characterization and synaptic connectivity of melanopsin-containing ganglion cells in the primate retina. Eur J Neurosci 26:2906–2921

    PubMed  Google Scholar 

  60. Semo M, Munoz Llamosas M, Foster RG, Jeffery G (2005) Melanopsin (Opn4) positive cells in the cat retina are randomly distributed across the ganglion cell layer. Vis Neurosci 22:111–116

    PubMed  Google Scholar 

  61. Belenky MA, Smeraski CA, Provencio I, Sollars PJ, Pickard GE (2003) Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol 460:380–393

    PubMed  Google Scholar 

  62. Barnard AR, Hattar S, Hankins MW, Lucas RJ (2006) Melanopsin regulates visual processing in the mouse retina. Curr Biol 16:389–395

    CAS  PubMed  Google Scholar 

  63. Hankins MW, Lucas RJ (2002) The primary visual pathway in humans is regulated according to long-term light exposure through the action of a nonclassical photopigment. Curr Biol 12:191–198

    CAS  PubMed  Google Scholar 

  64. Sekaran S, Foster RG, Lucas RJ, Hankins MW (2003) Calcium imaging reveals a network of intrinsically light-sensitive inner-retinal neurons. Curr Biol 13:1290–1298

    CAS  PubMed  Google Scholar 

  65. Iuvone PM, Galli CL, Garrison-Gund CK, Neff NH (1978) Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons. Science 202:901–902

    CAS  PubMed  Google Scholar 

  66. Bjelke B, Goldstein M, Tinner B, Andersson C, Sesack SR, Steinbusch HW, Lew JY, He X, Watson S, Tengroth B, Fuxe K (1996) Dopaminergic transmission in the rat retina: evidence for volume transmission. J Chem Neuroanat 12:37–50

    CAS  PubMed  Google Scholar 

  67. Lasater EM, Dowling JE (1985) Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells. Proc Natl Acad Sci USA 82:3025–3029

    CAS  PubMed  Google Scholar 

  68. Hayashida Y, Ishida AT (2004) Dopamine receptor activation can reduce voltage-gated Na+ current by modulating both entry into and recovery from inactivation. J Neurophysiol 92:3134–3141

    CAS  PubMed  Google Scholar 

  69. Ichinose T, Lukasiewicz PD (2007) Ambient light regulates sodium channel activity to dynamically control retinal signaling. J Neurosci 27:4756–4764

    CAS  PubMed  Google Scholar 

  70. Nir I, Harrison JM, Haque R, Low MJ, Grandy DK, Rubinstein M, Iuvone PM (2002) Dysfunctional light-evoked regulation of cAMP in photoreceptors and abnormal retinal adaptation in mice lacking dopamine D4 receptors. J Neurosci 22:2063–2073

    CAS  PubMed  Google Scholar 

  71. Cameron MA, Pozdeyev N, Vugler AA, Cooper H, Iuvone PM, Lucas RJ (2009) Light regulation of retinal dopamine that is independent of melanopsin phototransduction. Eur J Neurosci 29:761–767

    CAS  PubMed  Google Scholar 

  72. Tsai JW, Hannibal J, Hagiwara G, Colas D, Ruppert E, Ruby NF, Heller HC, Franken P, Bourgin P (2009) Melanopsin as a sleep modulator: circadian gating of the direct effects of light on sleep and altered sleep homeostasis in Opn4(−/−) mice. PLoS Biol 7:e1000125

    PubMed  Google Scholar 

  73. Lupi D, Oster H, Thompson S, Foster RG (2008) The acute light-induction of sleep is mediated by OPN4-based photoreception. Nat Neurosci 11:1068–1073

    CAS  PubMed  Google Scholar 

  74. Altimus CM, Guler AD, Villa KL, McNeill DS, Legates TA, Hattar S (2008) Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation. Proc Natl Acad Sci USA 105:19998–20003

    CAS  PubMed  Google Scholar 

  75. Harrington ME (1997) The ventral lateral geniculate nucleus and the intergeniculate leaflet: interrelated structures in the visual and circadian systems. Neurosci Biobehav Rev 21:705–727

    CAS  PubMed  Google Scholar 

  76. Baver SB, Pickard GE, Sollars PJ (2008) Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus. Eur J Neurosci 27:1763–1770

    PubMed  Google Scholar 

  77. Vandewalle G, Schmidt C, Albouy G, Sterpenich V, Darsaud A, Rauchs G, Berken PY, Balteau E, Degueldre C, Luxen A, Maquet P, Dijk DJ (2007) Brain responses to violet, blue, and green monochromatic light exposures in humans: prominent role of blue light and the brainstem. PLoS ONE 2:e1247

    PubMed  Google Scholar 

  78. Sollars PJ, Smeraski CA, Kaufman JD, Ogilvie MD, Provencio I, Pickard GE (2003) Melanopsin and non-melanopsin expressing retinal ganglion cells innervate the hypothalamic suprachiasmatic nucleus. Vis Neurosci 20:601–610

    PubMed  Google Scholar 

  79. Pickard GE (1982) The afferent connections of the suprachiasmatic nucleus of the golden hamster with emphasis on the retinohypothalamic projection. J Comp Neurol 211:65–83

    CAS  PubMed  Google Scholar 

  80. Balkema GW, Drager UC (1990) Origins of uncrossed retinofugal projections in normal and hypopigmented mice. Vis Neurosci 4:595–604

    CAS  PubMed  Google Scholar 

  81. Murakami DM, Miller JD, Fuller CA (1989) The retinohypothalamic tract in the cat: retinal ganglion cell morphology and pattern of projection. Brain Res 482:283–296

    CAS  PubMed  Google Scholar 

  82. Pickard GE (1980) Morphological characteristics of retinal ganglion cells projecting to the suprachiasmatic nucleus: a horseradish peroxidase study. Brain Res 183:458–465

    CAS  PubMed  Google Scholar 

  83. Gooley JJ, Lu J, Chou TC, Scammell TE, Saper CB (2001) Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci 4:1165

    CAS  PubMed  Google Scholar 

  84. Semo M, Lupi D, Peirson SN, Butler JN, Foster RG (2003) Light-induced c-fos in melanopsin retinal ganglion cells of young and aged rodless/coneless (rd/rd cl) mice. Eur J Neurosci 18:3007–3017

    PubMed  Google Scholar 

  85. Tu DC, Zhang D, Demas J, Slutsky EB, Provencio I, Holy TE, Van Gelder RN (2005) Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron 48:987–999

    CAS  PubMed  Google Scholar 

  86. Brideau AD, Eldridge MG, Enquist LW (2000) Directional transneuronal infection by pseudorabies virus is dependent on an acidic internalization motif in the Us9 cytoplasmic tail. J Virol 74:4549–4561

    CAS  PubMed  Google Scholar 

  87. Husak PJ, Kuo T, Enquist LW (2000) Pseudorabies virus membrane proteins gI and gE facilitate anterograde spread of infection in projection-specific neurons in the rat. J Virol 74:10975–10983

    CAS  PubMed  Google Scholar 

  88. Tomishima MJ, Enquist LW (2001) A conserved alpha-herpesvirus protein necessary for axonal localization of viral membrane proteins. J Cell Biol 154:741–752

    CAS  PubMed  Google Scholar 

  89. Pickard GE, Smeraski CA, Tomlinson CC, Banfield BW, Kaufman J, Wilcox CL, Enquist LW, Sollars PJ (2002) Intravitreal injection of the attenuated pseudorabies virus PRV Bartha results in infection of the hamster suprachiasmatic nucleus only by retrograde transsynaptic transport via autonomic circuits. J Neurosci 22:2701–2710

    CAS  PubMed  Google Scholar 

  90. Smeraski CA, Sollars PJ, Ogilvie MD, Enquist LW, Pickard GE (2004) Suprachiasmatic nucleus input to autonomic circuits identified by retrograde transsynaptic transport of pseudorabies virus from the eye. J Comp Neurol 471:298–313

    PubMed  Google Scholar 

  91. Smith BN, Banfield BW, Smeraski CA, Wilcox CL, Dudek FE, Enquist LW, Pickard GE (2000) Pseudorabies virus expressing enhanced green fluorescent protein: A tool for in vitro electrophysiological analysis of transsynaptically labeled neurons in identified central nervous system circuits. Proc Natl Acad Sci USA 97:9264–9269

    CAS  PubMed  Google Scholar 

  92. Glatzer NR, Derbenev AV, Banfield BW, Smith BN (2007) Endomorphin-1 modulates intrinsic inhibition in the dorsal vagal complex. J Neurophysiol 98:1591–1599

    CAS  PubMed  Google Scholar 

  93. Hartwick AT, Bramley JR, Yu J, Stevens KT, Allen CN, Baldridge WH, Sollars PJ, Pickard GE (2007) Light-evoked calcium responses of isolated melanopsin-expressing retinal ganglion cells. J Neurosci 27:13468–13480

    CAS  PubMed  Google Scholar 

  94. Walker MT, Brown RL, Cronin TW, Robinson PR (2008) Photochemistry of retinal chromophore in mouse melanopsin. Proc Natl Acad Sci USA 105:8861–8865

    CAS  PubMed  Google Scholar 

  95. Hatori M, Le H, Vollmers C, Keding SR, Tanaka N, Buch T, Waisman A, Schmedt C, Jegla T, Panda S (2008) Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS ONE 3:e2451

    PubMed  Google Scholar 

  96. Do MT, Kang SH, Xue T, Zhong H, Liao HW, Bergles DE, Yau KW (2009) Photon capture and signalling by melanopsin retinal ganglion cells. Nature 457:281–287

    CAS  PubMed  Google Scholar 

  97. Rossant J, McMahon A (1999) “Cre”-ating mouse mutants-a meeting review on conditional mouse genetics. Genes Dev 13:142–145

    CAS  PubMed  Google Scholar 

  98. Warren EJ, Allen CN, Brown RL, Robinson DW (2003) Intrinsic light responses of retinal ganglion cells projecting to the circadian system. Eur J Neurosci 17:1727–1735

    PubMed  Google Scholar 

  99. Graham DM, Wong KY, Shapiro P, Frederick C, Pattabiraman K, Berson DM (2008) Melanopsin ganglion cells use a membrane-associated rhabdomeric phototransduction cascade. J Neurophysiol 99:2522–2532

    CAS  PubMed  Google Scholar 

  100. Brown TM, Lucas RJ (2009) Melanopsin phototransduction: great excitement over a poor catch. Curr Biol 19:R256–R257

    CAS  PubMed  Google Scholar 

  101. Nikonov SS, Kholodenko R, Lem J, Pugh EN Jr (2006) Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings. J Gen Physiol 127:359–374

    PubMed  Google Scholar 

  102. Raport CJ, Lem J, Makino C, Chen CK, Fitch CL, Hobson A, Baylor D, Simon MI, Hurley JB (1994) Downregulation of cGMP phosphodiesterase induced by expression of GTPase-deficient cone transducin in mouse rod photoreceptors. Invest Ophthalmol Vis Sci 35:2932–2947

    CAS  PubMed  Google Scholar 

  103. Neumann T, Ziegler C, Blau A (2008) Multielectrode array recordings reveal physiological diversity of intrinsically photosensitive retinal ganglion cells in the chick embryo. Brain Res 1207:120–127

    CAS  PubMed  Google Scholar 

  104. O’Brien BJ, Isayama T, Richardson R, Berson DM (2002) Intrinsic physiological properties of cat retinal ganglion cells. J Physiol 538:787–802

    PubMed  Google Scholar 

  105. Terakita A (2005) The opsins. Genome Biol 6:213

    PubMed  Google Scholar 

  106. Koyanagi M, Takano K, Tsukamoto H, Ohtsu K, Tokunaga F, Terakita A (2008) Jellyfish vision starts with cAMP signaling mediated by opsin-G(s) cascade. Proc Natl Acad Sci USA 105:15576–15580

    CAS  PubMed  Google Scholar 

  107. Koyanagi M, Kubokawa K, Tsukamoto H, Shichida Y, Terakita A (2005) Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr Biol 15:1065–1069

    CAS  PubMed  Google Scholar 

  108. Fu Y, Zhong H, Wang MH, Luo DG, Liao HW, Maeda H, Hattar S, Frishman LJ, Yau KW (2005) Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. Proc Natl Acad Sci USA 102:10339–10344

    CAS  PubMed  Google Scholar 

  109. Isoldi MC, Rollag MD, Castrucci AM, Provencio I (2005) Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proc Natl Acad Sci USA 102:1217–1221

    CAS  PubMed  Google Scholar 

  110. Sekaran S, Lall GS, Ralphs KL, Wolstenholme AJ, Lucas RJ, Foster RG, Hankins MW (2007) 2-Aminoethoxydiphenylborane is an acute inhibitor of directly photosensitive retinal ganglion cell activity in vitro and in vivo. J Neurosci 27:3981–3986

    CAS  PubMed  Google Scholar 

  111. Warren EJ, Allen CN, Brown RL, Robinson DW (2006) The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells. Eur J Neurosci 23:2477–2487

    PubMed  Google Scholar 

  112. Contin MA, Verra DM, Salvador GA, Ilincheta MG, Giusto NM, Guido ME (2009) Intrinsically photoreceptive retinal ganglion cells: involvement of a phosphoinositide cycle in the phototransduction cascade. IOVS Abstract, 5033/D709

  113. Contin MA, Verra DM, Guido ME (2006) An invertebrate-like phototransduction cascade mediates light detection in the chicken retinal ganglion cells. FASEB J 20:2648–2650

    CAS  PubMed  Google Scholar 

  114. Berson DM (2007) Phototransduction in ganglion-cell photoreceptors. Pflügers Arch 454:849–855

    Google Scholar 

  115. Sekaran S, Lupi D, Jones SL, Sheely CJ, Hattar S, Yau KW, Lucas RJ, Foster RG, Hankins MW (2005) Melanopsin-dependent photoreception provides earliest light detection in the mammalian retina. Curr Biol 15:1099–1107

    CAS  PubMed  Google Scholar 

  116. Kumbalasiri T, Rollag MD, Isoldi MC, Castrucci AM, Provencio I (2007) Melanopsin triggers the release of internal calcium stores in response to light. Photochem Photobiol 83:273–279

    CAS  PubMed  Google Scholar 

  117. Hermans E (2003) Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors. Pharmacol Ther 99:25–44

    CAS  PubMed  Google Scholar 

  118. Guler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao HW, Barnard AR, Cahill H, Badea TC, Zhao H, Hankins MW, Berson DM, Lucas RJ, Yau KW, Hattar S (2008) Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453:102–105

    PubMed  Google Scholar 

  119. Goz D, Studholme K, Lappi DA, Rollag MD, Provencio I, Morin LP (2008) Targeted destruction of photosensitive retinal ganglion cells with a saporin conjugate alters the effects of light on mouse circadian rhythms. PLoS ONE 3:e3153

    PubMed  Google Scholar 

  120. Tarttelin EE, Bellingham J, Bibb LC, Foster RG, Hankins MW, Gregory-Evans K, Gregory-Evans CY, Wells DJ, Lucas RJ (2003) Expression of opsin genes early in ocular development of humans and mice. Exp Eye Res 76:393–396

    CAS  PubMed  Google Scholar 

  121. Hannibal J, Fahrenkrug J (2004) Melanopsin containing retinal ganglion cells are light responsive from birth. Neuroreport 15:2317–2320

    CAS  PubMed  Google Scholar 

  122. Speh JC, Moore RY (1993) Retinohypothalamic tract development in the hamster and rat. Brain Res Dev Brain Res 76:171–181

    CAS  PubMed  Google Scholar 

  123. Lupi D, Sekaran S, Jones SL, Hankins MW, Foster RG (2006) Light-evoked FOS induction within the suprachiasmatic nuclei (SCN) of melanopsin knockout (Opn4−/−) mice: a developmental study. Chronobiol Int 23:167–179

    CAS  PubMed  Google Scholar 

  124. Bibb LC, Holt JK, Tarttelin EE, Hodges MD, Gregory-Evans K, Rutherford A, Lucas RJ, Sowden JC, Gregory-Evans CY (2001) Temporal and spatial expression patterns of the CRX transcription factor and its downstream targets. Critical differences during human and mouse eye development. Hum Mol Genet 10:1571–1579

    CAS  PubMed  Google Scholar 

  125. Dowling JE, Sidman RL (1962) Inherited retinal dystrophy in the rat. J Cell Biol 14:73–109

    CAS  PubMed  Google Scholar 

  126. Fulton AB, Graves AL (1980) Background adaptation in developing rat retina: an electroretinographic study. Vision Res 20:819–826

    CAS  PubMed  Google Scholar 

  127. Bakall B, Marmorstein LY, Hoppe G, Peachey NS, Wadelius C, Marmorstein AD (2003) Expression and localization of bestrophin during normal mouse development. Invest Ophthalmol Vis Sci 44:3622–3628

    PubMed  Google Scholar 

  128. Omura Y, Oguri M (1993) Early development of the pineal photoreceptors prior to the retinal differentiation in the embryonic rainbow-trout, Oncorhynchus mykiss (Teleostei). Arch Histol Cytol 56:283–291

    CAS  PubMed  Google Scholar 

  129. Roberts A (1978) Pineal eye and behavior in Xenopus tadpoles. Nature 273:774–775

    CAS  PubMed  Google Scholar 

  130. Young RW (1984) Cell death during differentiation of the retina in the mouse. J Comp Neurol 229:362–373

    CAS  PubMed  Google Scholar 

  131. Ruggiero L, Allen CN, Lane Brown R, Robinson DW (2009) The development of melanopsin-containing retinal ganglion cells in mice with early retinal degeneration. Eur J Neurosci 29:359–367

    PubMed  Google Scholar 

  132. Badea TC, Cahill H, Ecker J, Hattar S, Nathans J (2009) Distinct roles of transcription factors brn3a and brn3b in controlling the development, morphology, and function of retinal ganglion cells. Neuron 61:852–864

    CAS  PubMed  Google Scholar 

  133. Lythgoe JN (1979) The ecology of vision. Clarendon, Oxford

    Google Scholar 

  134. Provencio I, Foster RG (1995) Circadian rhythms in mice can be regulated by photoreceptors with cone-like characteristics. Brain Res 694:183–190

    CAS  PubMed  Google Scholar 

  135. Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau KW, Dacey DM (2007) Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Res 47:946–954

    CAS  PubMed  Google Scholar 

  136. Brainard GC, Hanifin JP, Greeson JM, Byrne B, Glickman G, Gerner E, Rollag MD (2001) Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci 21:6405–6412

    CAS  PubMed  Google Scholar 

  137. Mure LS, Cornut PL, Rieux C, Drouyer E, Denis P, Gronfier C, Cooper HM (2009) Melanopsin bistability: a fly’s eye technology in the human retina. PLoS One 4:e5991

    PubMed  Google Scholar 

  138. Lem J, Krasnoperova NV, Calvert PD, Kosaras B, Cameron DA, Nicolo M, Makino CL, Sidman RL (1999) Morphological, physiological, and biochemical changes in rhodopsin knockout mice. Proc Natl Acad Sci USA 96:736–741

    CAS  PubMed  Google Scholar 

  139. Johnson RL, Grant KB, Zankel TC, Boehm MF, Merbs SL, Nathans J, Nakanishi K (1993) Cloning and expression of goldfish opsin sequences. Biochemistry 32:208–214

    CAS  PubMed  Google Scholar 

  140. Yokoyama S (2000) Molecular evolution of vertebrate visual pigments. Prog Retin Eye Res 19:385–419

    CAS  PubMed  Google Scholar 

  141. Reeves PJ, Thurmond RL, Khorana HG (1996) Structure and function in rhodopsin: high level expression of a synthetic bovine opsin gene and its mutants in stable mammalian cell lines. Proc Natl Acad Sci USA 93:11487–11492

    CAS  PubMed  Google Scholar 

  142. Torii M, Kojima D, Okano T, Nakamura A, Terakita A, Shichida Y, Wada A, Fukada Y (2007) Two isoforms of chicken melanopsins show blue light sensitivity. FEBS Lett 581:5327–5331

    CAS  PubMed  Google Scholar 

  143. Lucas RJ (2006) Chromophore regeneration: melanopsin does its own thing. Proc Natl Acad Sci USA 103:10153–10154

    CAS  PubMed  Google Scholar 

  144. Mure LS, Rieux C, Hattar S, Cooper HM (2007) Melanopsin-dependent nonvisual responses: evidence for photopigment bistability in vivo. J Biol Rhythms 22:411–424

    PubMed  Google Scholar 

  145. Mawad K, Van Gelder RN (2008) Absence of long-wavelength photic potentiation of murine intrinsically photosensitive retinal ganglion cell firing in vitro. J Biol Rhythms 23:387–391

    PubMed  Google Scholar 

  146. Bellingham J, Whitmore D, Philp AR, Wells DJ, Foster RG (2002) Zebrafish melanopsin: isolation, tissue localisation and phylogenetic position. Brain Res Mol Brain Res 107:128–136

    CAS  PubMed  Google Scholar 

  147. Frigato E, Vallone D, Bertolucci C, Foulkes NS (2006) Isolation and characterization of melanopsin and pinopsin expression within photoreceptive sites of reptiles. Naturwissenschaften 93:379–385

    CAS  PubMed  Google Scholar 

  148. Chaurasia SS, Rollag MD, Jiang G, Hayes WP, Haque R, Natesan A, Zatz M, Tosini G, Liu C, Korf HW, Iuvone PM, Provencio I (2005) Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types. J Neurochem 92:158–170

    CAS  PubMed  Google Scholar 

  149. Drivenes O, Soviknes AM, Ebbesson LO, Fjose A, Seo HC, Helvik JV (2003) Isolation and characterization of two teleost melanopsin genes and their differential expression within the inner retina and brain. J Comp Neurol 456:84–93

    CAS  PubMed  Google Scholar 

  150. Bellingham J, Chaurasia SS, Melyan Z, Liu C, Cameron MA, Tarttelin EE, Iuvone PM, Hankins MW, Tosini G, Lucas RJ (2006) Evolution of melanopsin photoreceptors: discovery and characterization of a new melanopsin in nonmammalian vertebrates. PLoS Biol 4:e254

    PubMed  Google Scholar 

  151. Pires SS, Shand J, Bellingham J, Arrese C, Turton M, Peirson S, Foster RG, Halford S (2007) Isolation and characterization of melanopsin (Opn4) from the Australian marsupial Sminthopsis crassicaudata (fat-tailed dunnart). Proc Biol Sci 274:2791–2799

    CAS  PubMed  Google Scholar 

  152. Menaker M, Tosini G (1996) The evolution of vertebrate circadian systems. In: Honma K, Honma S (eds) Sixth Sapporo symposium on biological rhythms: circadian organization and oscillatory coupling. Hokkaido University Press, Sapporo, pp 39–52

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Leverhulme Trust for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena J. Bailes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailes, H.J., Lucas, R.J. Melanopsin and inner retinal photoreception. Cell. Mol. Life Sci. 67, 99–111 (2010). https://doi.org/10.1007/s00018-009-0155-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0155-7

Keywords

Navigation