Skip to main content
Log in

Non-abelian tensor square of finite-by-nilpotent groups

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Let G be a group. We denote by \({\nu(G)}\) an extension of the non-abelian tensor square \({G \otimes G}\) by \({G \times G}\). We prove that if G is finite-by-nilpotent, then the non-abelian tensor square \({G \otimes G}\) is finite-by-nilpotent. Moreover, \({\nu(G)}\) is nilpotent-by-finite (Theorem A). Also we characterize BFC-groups in terms of \({\nu(G)}\) among the groups G in which the derived subgroup is finitely generated (Theorem B).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blyth R.D., Morse R.F.: Computing the nonabelian tensor square of polycyclic groups. J. Algebra 321, 2139–2148 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brown R., Loday J.-L.: Van Kampen theorems for diagrams of spaces. Topology 26, 311–335 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brown R., Johnson D.L., Robertson E.F.: Some computations of non-abelian tensor products of groups. J. Algebra 111, 177–202 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gumber D., Kalra H.: On the converse of a theorem of Schur. Arch. Math. 101, 17–20 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ph. Hall, Finite-by-nilpotent groups, Proc. Camb. Philos. Soc. 52 (1956), 611–616

  6. Hilton P.: On a theorem of Schur. Int. J. Math. Math. Sci. 28, 455–460 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. L.-C. Kappe, Nonabelian tensor products of groups: the commutator connection, Proc. Groups St. Andrews 1997 at Bath, London Math. Soc. Lecture Notes 261 (1999), 447–454.

  8. B. C. R. Lima and R. N De Oliveira, Weak commutativity between two isomorophic polycyclic groups, J. Group. Theory 19 (2016), 239–248.

  9. Moravec P.: The exponents of nonabelian tensor products of groups. J. Pure Appl. Algebra 212, 1840–1848 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nakaoka I.N., Rocco N.R.: A survey of non-abelian tensor products of groups and related constructions. Bol. Soc. Paran. Mat. 30, 77–89 (2012)

    MathSciNet  Google Scholar 

  11. Neumann B.H.: Groups with finite classes of conjugate elements. Prof. London Math. Soc. 1, 178–187 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  12. Niroomand P.: The converse of Schur’s theorem. Arch. Math. 94, 401–403 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Niroomand P., Parvizi M.: On the structure of groups whose exterior or tensor square is a p-group. J. Algebra 352, 347–353 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. D. J. S. Robinson, A course in the theory of groups, 2nd edition, Springer-Verlag, New York, 1996.

  15. Rocco N.R.: On a construction related to the non-abelian tensor square of a group, Bol. Soc. Brasil Mat. 22, 63–79 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rocco N.R.: A presentation for a crossed embedding of finite solvable groups. Comm. Algebra 22, 1975–1998 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. M K. Yadav, Converse of Schur’s Theorem – A statement, preprint available at arXiv:1212.2710v2 [math.GR].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimundo Bastos.

Additional information

This work was supported by CAPES-Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastos, R., Rocco, N.R. Non-abelian tensor square of finite-by-nilpotent groups. Arch. Math. 107, 127–133 (2016). https://doi.org/10.1007/s00013-016-0930-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-016-0930-2

Mathematics Subject Classification

Keywords

Navigation