Skip to main content
Log in

Sharp L 1-Poincaré inequalities correspond to optimal hypersurface cuts

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Let \({\Omega \subset \mathbb{R}^n}\) be a convex set. If \({u: \Omega \rightarrow \mathbb{R}}\) has mean 0, then we have the classical Poincaré inequality

$$\|u \|_{L^p} \leq c_p {\rm diam}(\Omega) \| \nabla u \|_{L^p}$$

with sharp constants \({c_2 = 1/\pi}\) (Payne and Weinberger, 1960) and c 1 =  1/2 (Acosta and Duran, 2005) independent of the dimension. The sharp constants c p for 1 <  p <  2 have recently been found by Valtorta (2012) and Ferone, Nitsch and Trombetti (2012). The purpose of this short paper is to prove a much stronger inequality in the endpoint L 1: we combine results of Cianchi and Kannan, Lovász and Simonovits to show that

$$\left\|u\right\|_{L^{1}(\Omega)}\leq \frac{2}{\log{2}} M_{}(\Omega)\left\|\nabla u\right\|_{L^{1}(\Omega)},$$

where \({M(\Omega)}\) is the average distance between a point in \({\Omega}\) and the center of gravity of \({\Omega}\) . If \({\Omega}\) is a regular simplex in \({\mathbb{R}^n}\) , this yields an improvement by a factor of \({\sim \sqrt{n}}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Acosta G., Durán R.: An optimal Poincaré inequality in L 1 for convex domains. Proc. Amer. Math. Soc. 132, 195– (2004)

    Article  MathSciNet  Google Scholar 

  2. Bokowski J., Sperner E.: Zerlegung konvexer Körper durch minimale Trennflächen (German). J. Reine Angew. Math. 311/312, 80–100 (1979)

    MathSciNet  Google Scholar 

  3. Bokowski J.: Ungleichungen für den Inhalt von Trennflächen (German). Arch. Math. (Basel) 34, 84–89 (1980)

    Article  MathSciNet  Google Scholar 

  4. J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969), Princeton Univ. Press, 195–199.

  5. Cianchil A.: A sharp form of Poincaré inequalities on balls and spheres. Z. Angew. Math. Phys. 40, 558–569 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cianchi A.: A sharp trace inequality for functions of bounded variation in the ball. Proc. Roy. Soc. Edinburgh Sect. A 142, 1179–1191 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. H. Conway and N.J.A. Sloane, Sphere packings, lattices and groups. Third edition. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. Grundlehren der Mathematischen Wissenschaften, 290. Springer-Verlag, New York, 1999.

  8. M. Dyer and A. Frieze, Computing the volume of convex bodies: a case where randomness provably helps, Proc. Sympos. Appl. Math., 44, Amer. Math. Soc., Providence, RI, 1991.

  9. Esposito L. et al.: The longest shortest fence and sharp Poincaré-Sobolev inequalities. Arch. Ration. Mech. Anal. 206, 821–851 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Ferone, C. Nitsch, and C. Trombetti, A remark on optimal weighted Poincaré inequalities for convex domains. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 23 (2012), 467–475.

  11. R. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics, 4. American Mathematical Society, Providence, RI, 1994.

  12. Gromov M., Milman V.D.: Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces. Compositio Math. 62, 263–282 (1987)

    MathSciNet  MATH  Google Scholar 

  13. Gysin L.: Inequalities for the product of the volumes of a partition determined in a convex body by a surface, Rend. Circ. Mat. Palermo 35(2), 420–428 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Dyer, A. Frieze, and R. Kannan, A Random Polynomial Time Algorithm for Approximating the Volume of a Convex Body, Proc. of the 21st ACM Symposium on Theory of Computing, 375–381.

  15. Kannan R., Lovász L., Simonovits M.: Isoperimetric problems for convex bodies and a localization lemma, Discrete Comput. Geom. 13, 541–559 (1995)

    MATH  Google Scholar 

  16. Karzanov A., Khachiyan L.: On the conductance of order Markov chains. Order 8, 7–15 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kawohl B., Fridman V.: Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant. Comment. Math. Univ. Carolin. 44, 659–667 (2003)

    MathSciNet  Google Scholar 

  18. Lefton L., Wei D.: Numerical approximation of the first eigenpair of the p-Laplacian using finite elements and the penalty method. Numer. Funct. Anal. Optim. 18, 389–399 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lovász L., Simonovits M.: Random walks in a convex body and an improved volume algorithm. Random Structures Algorithms 4, 359–412 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mao Q.: On an inequality related to the splitting of a convex body by a plane. Geom. Dedicata 47, 237–239 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Payne L., Weinberger H.: An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5, 286–292 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  22. Santaló L.: An inequality between the parts into which a convex body is divided by a plane section. Rend. Circ. Mat. Palermo 32(2), 124–130 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Valtorta D.: Sharp estimate on the first eigenvalue of the p-Laplacian. Nonlinear Anal. 75, 4974–4994 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yau S.-T.: Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold. Ann. Sci. cole Norm. Sup. 8(4), 487–507 (1975)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Steinerberger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinerberger, S. Sharp L 1-Poincaré inequalities correspond to optimal hypersurface cuts. Arch. Math. 105, 179–188 (2015). https://doi.org/10.1007/s00013-015-0778-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-015-0778-x

Mathematical Subject Classification

Keywords

Navigation