Skip to main content
Log in

Extremal problems on the class of convex functions of order −1/2

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Lawrence Zalcman’s conjecture states that if \({f(z)=z+\sum\nolimits_{n=2}^{\infty}a_{n}z^{n}}\) is analytic and univalent in the unit disk \({|z|<1}\), then \({|a_n^2-a_{2n-1}|\leq (n-1)^2,}\) for each \({n\geq 2}\), with equality only for the Koebe function \({k(z)=z/(1-z)^2}\) and its rotations. This conjecture remains open although it has been verified for a few geometric subclasses of the class of univalent analytic functions. In this paper, we consider this problem for the family of normalized functions f analytic and univalent in the unit disk |z| < 1 satisfying the condition

$${\rm Re }\left( 1+\frac{zf''(z)}{f'(z)}\right) > -\frac{1}{2}\,\,\,\,\,{\rm for}\,\,\,\,\,|z|<1.$$

Functions satisfying this condition are known to be convex in some direction (and hence close-to-convex and univalent) in |z| < 1. A few other related basic results and remarks about the Hayman index of functions in this family are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Abu Muhanna and S. Ponnusamy, Extreme points method and univalent harmonic mappings, Preprint.

  2. Bharanedhar S.V., Ponnusamy S.: Uniform close-to-convexity radius of sections of functions in the close-to-convex family. J. Ramanujan Math. Soc. 29, 243–251 (2014)

    MATH  MathSciNet  Google Scholar 

  3. Brown J.E., Tsao A.: On the Zalcman conjecture for starlikeness and typically real functions. Math. Z. 191, 467–474 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bshouty D., Lyzzaik A.: Close-to-convexity criteria for planar harmonic mappings. Complex Anal. Oper. Theory 5, 767–774 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Clunie J., Duren P.L.: Addendum: An arclength problem for close-to-convex function. J. London Math. Soc. 41, 181–182 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  6. P. L. Duren, Univalent functions (Grundlehren der mathematischen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo), Springer-Verlag, 1983.

  7. A. W. Goodman, Univalent functions, Vols. 1-2, Mariner, Tampa, Florida, 1983.

  8. D. G. Hallenbeck and T. H. MacGregor, Linear problem and convexity techniques in geometric function theory, Pitman, 1984.

  9. Keogh F.R.: Some inequalities for convex and starshaped domains. J. London Math. Soc. 29, 121–123 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  10. Krushkal S.L.: Univalent functions and holomorphic motions. J. Analyse Math. 66, 253–275 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Krushkal S. L.: Proof of the Zalcman conjecture for initial coefficients. Georgian Math. J. 17, 663–681 (2010)

    MATH  MathSciNet  Google Scholar 

  12. S. L. Krushkal, Hyperbolic metrics, homogeneous holomorphic functionals and Zalcmans conjecture, http://arxiv.org/pdf/1109.4646v2

  13. L. Li and S. Ponnusamy, Generalized Zalcman conjectures for several subclasses of univalent functions, In preparation.

  14. Livingston A.E.: The coefficients of multivalent close-to-convex functions, Proc. Amer. Math. Soc. 21, 545–552 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ma W.: The Zalcman conjecture for close-to-convex functions. Proc. Amer. Math. Soc. 104, 741–744 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ma W.: Generalized Zalcman conjecture for starlike and typically real functions. J. Math. Ana. Appl. 234, 328–339 (1999)

    Article  MATH  Google Scholar 

  17. T. H. MacGregor and D. R. Wilken, Extreme points and support points, Handbook of complex analysis: geometric function theory (Edited by Kühnau). Vol. 1, 371–392, Elsevier, Amsterdam, 2005.

  18. Marx A.: Untersuchungen u\({{\rm \ddot{b}}}\)er schlichte Abbildungen. Math. Annalen 107, 40–67 (1932)

    Article  MathSciNet  Google Scholar 

  19. Miller S.S.: An arclength problem for m-fold symmetric univalent functions. Kodai Math. J. Sem. Rep. 24, 196–202 (1972)

    Google Scholar 

  20. Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.

  21. Ch. Pommerenke, Boundary behaviour of conformal maps (Grundlehren der mathematischen Wissenschaften 299), New York, Berlin, Heidelberg, Tokyo), Springer-Verlag, 1991.

  22. Ponnusamy S., Sahoo S.K., Yanagihara H.: Radius of convexity of partial sums of functions in the close-to-convex family. Nonlinear Anal. 95, 219–228 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Umezawa T.: Analytic functions convex in one direction. J. Math. Soc. Japan 4, 194–202 (1952)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saminathan Ponnusamy.

Additional information

S. Ponnusamy is on leave from the Department of Mathematics, Indian Institute of Technology Madras, Chennai-600 036, India.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhanna, Y.A., Li, L. & Ponnusamy, S. Extremal problems on the class of convex functions of order −1/2. Arch. Math. 103, 461–471 (2014). https://doi.org/10.1007/s00013-014-0705-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-014-0705-6

Mathematical Subject Classification

Keywords

Navigation