Skip to main content
Log in

A formal proof of the projective Eisenbud–Evans–Storch theorem

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We extend a constructive proof of the Eisenbud–Evans–Storch theorem, developed in a previous work by Coquand, Schuster, and Lombardi, from the affine to the projective case. The main tool is that of distributive lattices, which allows us to replace the classical topological arguments by more algebraic and constructive ones. Given a suitable graded ring, we work in the distributive lattice in which the prime filters correspond to the homogeneous prime ideals. The proof presented here is one of the first examples of concrete results obtained using this tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coquand T.: Sur un théorème de Kronecker concernant les variétés algébriques. C. R. Math. Acad. Sci.Paris 338, 291–294 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Coquand T.: About Stone’s notion of spectrum. Journal of Pure and Applied Algebra 197, 148–158 (2005)

    Article  MathSciNet  Google Scholar 

  3. Coquand T.: Space of valuations. Ann. Pure Appl. Logic, 157, 97–109 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Coquand and H. Lombardi, Hidden constructions in abstract algebra: Krull dimension of distributive lattices and commutative rings., in: M. F. et al. (ed.), Commutative Ring Theory and Applications, Lecture Notes in Pure and Applied Mathematics, volume 231, pp. 477–499, 2002.

  5. Coquand T., Lombardi H.: A logical approach to abstract algebra. Math. Struct. in Comput. Science 16, 885–900 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Coquand, H. Lombardi, and M.-F. Roy, An elementary characterisation of Krull dimension, in: L. Crosilla and P. Schuster (eds.), From Sets and Types to Topology and Analysis., Oxford Logic Guides, volume 48, pp. 239–244, Oxford University Press, 2005.

  7. Coquand T., Lombardi H., Schuster P.: A nilregular element property. Archiv Math. 85, 49–54 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coquand T., Lombardi H., Schuster P.: The projective spectrum as a distributive lattice. Cah. Topol. Géom. Différ. Catég. 48, 220–228 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Coste M., Lombardi H., Roy M.-F.: Dynamical method in algebra: Effective Nullstellensätze. Ann. Pure Appl. Logic 111, 203–256 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Crosilla and P. Schuster, Finite methods in mathematical practice, in: M. Detlefsen and G. Link (eds.), Formalism and Beyond, Ontos, Heusenstamm, To appear.

  11. L. Ducos, Dimension de Krull : une étude algébrique avec outils constructifs, Available at: http://www-math.univ-poitiers.fr/ducos/src/travaux.html, 2010.

  12. Eisenbud D., Evans E.G.: Every algebraic set in the n-space is the intersection of n hypersurfaces. Inventiones Mathematicae 19, 107–112 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Joyal A.: Les théoremes de Chevalley-Tarski et remarques sur l’algèbre constructive. Cah. Topol. Géom. Différ. Catég. 16, 256–258 (1976)

    MATH  Google Scholar 

  14. Kneser M.: Über die Darstellung algebraischer Raumkurven als Durchschnitte von Flächen. Archiv der Mathematik 11, 157–158 (1960)

    Article  MATH  Google Scholar 

  15. L. Kronecker, Grundzüge einer aritmetischen Theorie der algebraischen Größ en., Journal für die Reine und angewandte Mathematik, pp. 1–122 (1882).

  16. Lombardi H.: Algèbre dynamique, espaces topologiques sans points et programme de Hilbert. Ann. Pure Appl. Logic 137, 256–290 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lombardi H., Quitté C.: Algèbre Commutative, Méthodes constructives, Modules projectifs de type fini. Calvage & Mounet, Paris (2012)

    Google Scholar 

  18. R. Mines, F. Richman, and W. Ruitenburg, A Course in Constructive Algebra, Springer, New York, 1988, universitext.

  19. Richman F.: Constructive aspects of Noetherian rings. Proc. Amer. Math. Soc. 44, 436–441 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. Richman F.: The regular element property. Proc. Amer. Math. Soc. 126, 2123–2129 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. G.-C. Rota Indiscrete Thoughts, Birkhäuser, Boston, Basel, Berlin, 1997.

  22. Sambin G.: Some points in formal topology. Theoret. Comput. Sci. 305, 347–408 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schuster P.: The Zariski spectrum as a formal geometry. Theoret. Comput. Sci. 405, 101–115 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schwichtenberg H.: Wainer S.S. Proofs and Computations. Cambridge University Press, Perspectives in Logic (2011)

    Book  Google Scholar 

  25. Storch U.: Bemerkung zu einem Satz von M. Kneser. Archiv der Mathematik 23, 403–404 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Rinaldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinaldi, D. A formal proof of the projective Eisenbud–Evans–Storch theorem. Arch. Math. 99, 9–24 (2012). https://doi.org/10.1007/s00013-012-0405-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-012-0405-z

Mathematics Subject Classification (2010)

Keywords

Navigation