Skip to main content
Log in

On the rank of compact p-adic Lie groups

Archiv der Mathematik Aims and scope Submit manuscript

Abstract

The rank of a profinite group G is the basic invariant \({{\rm rk}(G):={\rm sup}\{d(H) \mid H \leq G\}}\), where H ranges over all closed subgroups of G and d(H) denotes the minimal cardinality of a topological generating set for H. A compact topological group G admits the structure of a p-adic Lie group if and only if it contains an open pro-p subgroup of finite rank. For every compact p-adic Lie group G one has rk(G) ≥ dim(G), where dim(G) denotes the dimension of G as a p-adic manifold. In this paper we consider the converse problem, bounding rk(G) in terms of dim(G). Every profinite group G of finite rank admits a maximal finite normal subgroup, its periodic radical π(G). One of our main results is the following. Let G be a compact p-adic Lie group such that π(G) = 1, and suppose that p is odd. If \(\{g \in G \mid g^{p-1}=1 \}\) is equal to {1}, then rk(G) = dim(G).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. D. Dixon et al., Analytic pro-p groups, 2nd ed., Cambridge Studies in Advanced Mathematics 61, Cambridge University Press, Cambridge, 1999.

  2. Dixon J.D., Kovács L.G.: Generating finite nilpotent irreducible linear groups. Quart. J. Math. Oxford 44, 1–15 (1993)

    Article  MATH  Google Scholar 

  3. González-Sánchez J., Klopsch B.: On w-maximal groups. J. Algebra 328, 155–166 (2011)

    Article  MathSciNet  Google Scholar 

  4. Guralnick R.: On the number of generators of a finite group. Arch. Math. (Basel) 53, 521–523 (1989)

    MATH  MathSciNet  Google Scholar 

  5. Heller A., Reiner I.: Representations of cyclic groups in rings of integers I. Ann. of Math. 76, 73–92 (1962)

    Article  MathSciNet  Google Scholar 

  6. Isaacs I.M.: The number of generators of a linear p-group. Can. J. Math. 24, 851–858 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kovács L.G., Robinson G.R.: Generating finite completely reducible linear groups. Proc. Amer. Math. Soc. 112, 357–364 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Laffey T.J.: The minimum number of generators of a finite p-group. Bull. London Math. Soc. 5, 288–290 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  9. Leedham-Green C.R., Plesken W.: Some remarks on Sylow subgroups of general linear groups. Math. Z. 191, 529–535 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lucchini A.: A bound on the number of generators of a finite group. Arch. Math. (Basel) 53, 313–317 (1989)

    MATH  MathSciNet  Google Scholar 

  11. Lucchini A.: Some questions on the number of generators of a finite group. Rend. Sem. Mat. Univ. Padova 83, 202–222 (1990)

    MathSciNet  Google Scholar 

  12. Lucchini A., Menegazzo F., Morigi M.: On the number of generators and composition length of finite linear groups. J. Algebra 243, 427–447 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Klopsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klopsch, B. On the rank of compact p-adic Lie groups. Arch. Math. 96, 321–333 (2011). https://doi.org/10.1007/s00013-011-0240-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-011-0240-7

Mathematics Subject Classification (2000)

Keywords

Navigation