Skip to main content
Log in

Congruences of fork extensions of slim, planar, semimodular lattices

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

For a slim, planar, semimodular lattice L and a covering square S of L, G. Czédli and E. T. Schmidt introduced the fork extension, L[S], which is also a slim, planar, semimodular lattice. This paper investigates when a congruence of L extends to L[S].

We introduce a join-irreducible congruence \({\gamma}\)(S) of L[S] and determine when it is new, in the sense that it is not generated by a join-irreducible congruence of L. We provide a complete description of \({\gamma}\)(S). Then we prove that \({\gamma}\)(S) has at most two covers in the order of join-irreducible congruences of L[S].

Finally, we derive the main result of this paper, the Two-cover Theorem: Every join-irreducible congruence has at most two covers in the order of join-irreducible congruences of a slim, planar, semimodular lattice L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Czédli G.: Representing homomorphisms of distributive lattices as restrictions of congruences of rectangular lattices. Algebra Universalis 67, 313–345 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Czédli G.: Patch extensions and trajectory colorings of slim rectangular lattices. Algebra Universalis 72, 125–154 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Czédli G.: A note on congruence lattices of slim semimodular lattices. Algebra Universalis 72, 225–230 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Czédli G.: An independence theorem for ordered sets of principal congruences and automorphism groups of bounded lattices. Acta Sci. Math. (Szeged) 82, 3–18 (2016)

    Article  Google Scholar 

  5. Czédli, G.: Diagrams and rectangular extensions of planar semimodular lattices. Algebra Universalis (in press)

  6. Czédli G., Grätzer G.: Notes on planar semimodular lattices. VII. Resections of planar semimodular lattices. Order 29, 1–12 (2012)

    MATH  Google Scholar 

  7. Czédli, G., Grätzer, G.: Planar Semimodular Lattices: Structure and Diagrams. Chapter 3 in [26] (2014)

  8. Czédli G., Czédli G., Czédli G.: Slim semimodular lattices. I. A visual approach. Order 29, 481–497 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Czédli G., Schmidt E.T.: Slim semimodular lattices. II. A description by patchwork systems. Order 30, 689–721 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grätzer, G.: The Congruences of a Finite Lattice, A Proof-by-Picture Approach. Birkhäuser, Boston (2006)

  11. Grätzer, G.: Lattice Theory: Foundation. Birkhäuser, Basel (2011)

  12. Grätzer, G.: Planar Semimodular Lattices: Congruences. Chapter 4 in [26] (2014)

  13. Grätzer G.: Congruences and prime-perspectivities in finite lattices. Algebra Universalis 74, 351–359 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grätzer, G.: The Congruences of a Finite Lattice, A Proof-by-Picture Approach, 2nd edn. Birkhäuser (2016)

  15. Grätzer G.: A technical lemma for congruences of finite lattices. Algebra Universalis 72, 53–55 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grätzer G.: Congruences in slim, planar, semimodular lattices: the swing lemma. Acta Sci. Math. (Szeged) 81, 381–397 (2015)

    Article  MathSciNet  Google Scholar 

  17. Grätzer, G.: Congruences and trajectories in planar semimodular lattices. (preprint)

  18. Grätzer G., Knapp E.: Notes on planar semimodular lattices. I. Construction. Acta Sci. Math. (Szeged) 73, 445–462 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Grätzer G., Knapp E.: A note on planar semimodular lattices. Algebra Universalis 58, 497–499 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grätzer G., Knapp E.: Notes on planar semimodular lattices. II. Congruences. Acta Sci. Math. (Szeged) 74, 37–47 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Grätzer G., Knapp E.: Notes on planar semimodular lattices. III. Rectangular lattices. Acta Sci. Math. (Szeged) 75, 29–48 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Grätzer G., Knapp E.: Notes on planar semimodular lattices. IV. The size of a minimal congruence lattice representation with rectangular lattices. Acta Sci. Math. (Szeged) 76, 3–26 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Grätzer G., Lakser H., Schmidt E.T.: Congruence lattices of finite semimodular lattices. Canad. Math. Bull. 41, 290–297 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grätzer G., Schmidt E.T.: A short proof of the congruence representation theorem for semimodular lattices. Algebra Universalis 71, 65–68 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Grätzer, G., Schmidt, E. T.: An extension theorem for planar semimodular lattices. Periodica Mathematica Hungarica (2014) 69, 32–40 (2014)

  26. Grätzer, G., Wehrung, F. (eds.): Lattice Theory: Special Topics and Applications, vol. 1. Birkhäuser, Basel (2014)

  27. Grätzer, G., Wehrung, F. (eds.): Lattice Theory: Special Topics and Applications, vol. 2. Birkhäuser, Basel (2016)

  28. Jakubík, J.: Congruence relations and weak projectivity in lattices. (Slovak) Časopis Pěst. Mat. 80, 206–216 (1955)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Grätzer.

Additional information

Presented by B. Davey.

To the memory of my friends, Ervin Fried and Jiří Sichler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grätzer, G. Congruences of fork extensions of slim, planar, semimodular lattices. Algebra Univers. 76, 139–154 (2016). https://doi.org/10.1007/s00012-016-0394-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00012-016-0394-z

2010 Mathematics Subject Classification

Key words and phrases

Navigation