Skip to main content

Advertisement

Log in

Preclinical evaluation of the urokinase receptor-derived peptide UPARANT as an anti-inflammatory drug

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Inflammation plays a key role in the pathogenesis of several chronic diseases. The urokinase plasminogen activator receptor (uPAR) exerts a plethora of functions in both physiological and pathological processes, including inflammation.

Objective and design

In this study, we evaluated the anti-inflammatory effect of a novel peptide ligand of uPAR, UPARANT, in different animal models of inflammation.

Subjects and treatment

Rats and mice were divided in different groups (n = 5) for single or repeated administration of vehicle (9% DMSO in 0.9% NaCl), UPARANT (6, 12 and 24 mg/kg) or dexamethasone (2 mg/kg). Animals were subjected to carrageenan-induced paw oedema or zymosan-induced peritonitis.

Methods

UPARANT effects were tested on: (1) the carrageenan-induced paw oedema volume, (2) the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and the nitrite/nitrate (NOx) levels in the paw exudates, (3) cells recruitment into the peritoneal cavity after zymosan injection and (4) NOx levels in the peritoneal lavage.

Results

UPARANT (12 and 24 mg/kg) reduced inflammation in both experimental paradigms. Analysis of pro-inflammatory enzymes revealed that administration of UPARANT reduced iNOS, COX2 and NO over-production.

Conclusions

Our study provides a solid evidence that UPARANT reduces the severity of inflammation in diverse animal models, thus representing a novel anti-inflammatory drug with potential advantages with respect to the typical steroidal agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ploug M, Rønne E, Behrendt N, Jensen AL, Blasi F, Danø K. Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol. J Biol Chem. 1991;266:1926–33.

    CAS  PubMed  Google Scholar 

  2. Ploug ML, Ellis V. Structure–function relationships in the receptor for urokinase-type plasminogen activator. Comparison to other members of the Ly-6 family and snake venom alpha-neurotoxins. FEBS Lett. 1994;349:163–8.

    Article  CAS  PubMed  Google Scholar 

  3. Høyer-Hansen G, Rønne E, Solberg H, Behrendt N, Ploug M, Lund LR, Ellis V, Danø K. Urokinase plasminogen activator cleaves its cell surface receptor releasing the ligand-binding domain. J Biol Chem. 1992;267:18224–9.

    PubMed  Google Scholar 

  4. Kjaergaard ML, Hansen LV, Jacobsen B, Gardsvoll H, Ploug M. Structure and ligand interactions of the urokinase receptor (uPAR). Front Biosci. 2008;13:5441–61.

    Article  CAS  PubMed  Google Scholar 

  5. Hajjar KA. Cellular receptors in the regulation of plasmin generation. Thromb Haemost. 1995;74:294–301.

    CAS  PubMed  Google Scholar 

  6. Sidenius N, Blasi F. The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. Cancer Metastasis Rev. 2003;22:205–22.

    Article  CAS  PubMed  Google Scholar 

  7. Gyetko MR, Aizenberg D, Mayo-Bond L, Pu J. Urokinase deficient and urokinase receptor-deficient mice have impaired neutrophil antimicrobial activation in vitro. LeukocBiol. 2004;76:648–56.

    CAS  Google Scholar 

  8. Selleri C, Montuori N, Ricci P, Ricci P, Visconte V, Carriero MV. Involvement of the urokinase type plasminogen activator receptor in hematopoietic stem cell mobilization. Blood. 2005;105:2198–205.

    Article  CAS  PubMed  Google Scholar 

  9. Lund LR, Green KA, Stoop AA, Ploug M, Almholt K, Lilla J. Plasminogen activation independent of uPA and tPA maintains wound healing in gene deficient mice. EMBO J. 2006;25:2686–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bifulco K, Longanesi-Cattani I, Gala M, Di Carluccio G, Masucci MT, Pavone V. The soluble form of urokinase receptor promotes angiogenesis through its Ser88-Arg-Ser-Arg-Tyr92 chemotactic sequence. J Thromb Haemost. 2010;8:2789–99.

    Article  CAS  PubMed  Google Scholar 

  11. Bifulco K, Longanesi-Cattani I, Gargiulo L, Maglio O, Cataldi M, De Rosa M, Stoppelli MP, Pavone V, Carriero MV. An urokinase receptor antagonist that inhibits cell migration by blocking the formyl peptide receptor. FEBS Lett. 2008;582:1141–6.

    Article  CAS  PubMed  Google Scholar 

  12. Perez HD, Holmes R, Kelly E, Mcclary J, Chou Q, Andrews WH. Cloning of the gene coding for a human receptor for formyl peptides—characterization of a promoter region and evidence for polymorphic expression. Biochemistry. 1992;31:11595–9.

    Article  CAS  PubMed  Google Scholar 

  13. Gwinn MR, Sharma A, De Nardin E. Single nucleotide polymorphisms of the N-formyl peptide receptor in localized juvenile periodontitis. J Periodontol. 1999;70:1194–201.

    Article  CAS  PubMed  Google Scholar 

  14. Migeotte I, Communi D, Parmentier M. Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor. 2006;17:501–19.

    Article  CAS  Google Scholar 

  15. Sahagun-Ruiz A, Colla JS, Juhn J, Gao JL, Murphy PM, McDermott DH. Contrasting evolution of the human leukocyte N-formylpeptide receptor subtypes FPR and FPRL1R. Genes Immun. 2001;2:335–42.

    Article  CAS  PubMed  Google Scholar 

  16. Hannon R, Croxtall JD, Getting S, Roviezzo F, Yona S, Paul-Clark MJ, Gavins FN, Perretti M, Morris JF, Buckingham JC, Flower RJ. Aberrant inflammation and resistance to glucocorticoids in annexin 12/2 mouse. FASEB J. 2003;17:253–5.

    CAS  PubMed  Google Scholar 

  17. Dufton N, Hannon R, Brancaleone V, Dalli J, Patel HB, Gray M, D’Acquisto F, Buckingham JC, Perretti M, Flower RJ. Anti-inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental inflammation. J Immunol. 2010;184:2611–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bifulco K, Longanesi-Cattani I, Franco P, Pavone V, Mugione P, Di Carluccio G, Masucci MT, Arra C, Pirozzi G, Stoppelli MP, Carriero MV. Single amino acid substitutions in the chemotactic sequence of urokinase receptor modulate cell migration and invasion. PLoS One. 2012;7:44806.

    Article  Google Scholar 

  19. Carriero MV, Longanesi-Cattani I, Bifulco K, Maglio O, Lista L, Barbieri A, Votta G, Masucci MT, Arra C, Franco R, De Rosa M, Stoppelli MP, Pavone V. Structure-based design of an urokinase-type plasminogen activator receptor-derived peptide inhibiting cell migration and lung metastasis. Mol Cancer Ther. 2009;8:2708–17.

    Article  CAS  PubMed  Google Scholar 

  20. Bifulco K, Longanesi-Cattani I, Liguori E, Arra C, Rea D, Masucci MT. A urokinase receptor-derived peptide inhibiting VEGF-dependent directional migration and vascular sprouting. Mol Cancer Ther. 2013;10:1981–93.

    Article  Google Scholar 

  21. Dal Monte M, Rezzola S, Cammalleri M, Belleri M, Locri F, Morbidelli L, Corsini M, Paganini G, Semeraro F, Cancarini A, Rusciano D, Presta M, Bagnoli P. Antiangiogenic effectiveness of the urokinase receptor-derived peptide UPARANT in a model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci. 2015;56:2392–407.

    Article  Google Scholar 

  22. Carriero MV, Bifulco K, Minopoli M, Lista L, Maglio O, Mele L, Di Carluccio G, De Rosa M, Pavone V. UPARANT: a urokinase receptor-derived peptide inhibitor of VEGF-driven angiogenesis with enhanced stability and in vitro and in vivo potency. Mol Cancer Ther. 2014;13:1092–104.

    Article  CAS  PubMed  Google Scholar 

  23. Vinegar R, Schreiber W, Hugo R. Biphasic development of carrageenin edema in rats. J Pharmacol Exp Ther. 1969;166:96–103.

    CAS  PubMed  Google Scholar 

  24. Garcia Leme J, Hamamura L, Leite MP, Rocha Silva M. Pharmacological analysis of the acute inflammatory process induced in the rat’s paw by local injection of carrageenin and by heating. Br J Pharmacol. 1973;48:88–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morris CJ. Carrageenan-induced paw edema in the rat and mouse. Methods Mol Biol. 2003;225:115–21 (review).

    PubMed  Google Scholar 

  26. Palazzo E, Marabese I, Soukupova M, Luongo L, Boccella S, Giordano C, de Novellis V, Rossi F, Maione S. Metabotropic glutamate receptor subtype 8 in the amygdala modulates thermal threshold, neurotransmitter release, and rostral ventromedial medulla cell activity in inflammatory pain. J Neurosci. 2011;31:4687–97.

    Article  CAS  PubMed  Google Scholar 

  27. Posadas I, Bucci M, Roviezzo F, Rossi A, Parente L, Sautebin L, Cirino G. Carrageenan-induced mouse paw oedema is biphasic, age-weight dependent and displays differential nitric oxide cyclooxygenase-2 expression. Br J Pharmacol. 2004;142:331–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Corea G, Fattorusso E, Lanzotti V, Di Meglio P, Maffia P, Grassia G, Ialenti A, Ianaro A. Discovery and biological evaluation of the novel naturally occurring diterpene pepluanone as anti-inflammatory agent. J Med Chem. 2005;4822:7055–62.

    Article  Google Scholar 

  29. Panza E, De Cicco P, Ercolano G, Armogida C, Scognamiglio G, Anniciello AM, Botti G, Cirino G, Ianaro A. Differential expression of cyclooxygenase-2 in metastatic melanoma affects progression free survival. Oncotarget. 2016;7(35):57077–85.

    PubMed  PubMed Central  Google Scholar 

  30. Butturini E, Di Paola R, Suzuki H, Paterniti I, Ahmad A, Mariotto S, Cuzzocrea S. Costunolide and Dehydrocostuslactone, two natural sesquiterpene lactones, ameliorate the inflammatory process associated to experimental pleurisy in mice. Eur J Pharmacol. 2014;5:107–15.

    Article  Google Scholar 

  31. Sostres C, Gargallo CJ, Lanas A. Nonsteroidal anti-inflammatory drugs and upper and lower gastrointestinal mucosal damage. Arthritis Res Ther. 2013;15(Suppl 3):S3.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vasarhelyi B. Soluble urokinase plasminogen activator receptor, the candidate prophetic biomarker in severe inflammatory response syndrome. J Intern Med. 2014;276:645–7.

    Article  CAS  PubMed  Google Scholar 

  33. Halici Z, Dengiz GO, Odabasoglu F, Suleyman H, Cadirci E, Halici M. Amiodarone has anti-inflammatory and anti-oxidative properties: an experimental study in rats with carrageenan-induced paw edema. Eur J Pharmacol. 2007;566:215–21.

    Article  CAS  PubMed  Google Scholar 

  34. Gilligan JP, Lovato SJ, Erion MD, Jeng AY. Modulation of carrageenan induced hind paw edema by substance P. Inflammation. 1994;18:285–92.

    Article  CAS  PubMed  Google Scholar 

  35. Harada M, Habata Y, Hosoya M, Nishi K, Fujii R, Kobayashi M, Hinuma S. N-Formylated humanin activates both formyl peptide receptor-like 1 and 2. Biochem Biophys Res Commun. 2004;324:255–61.

    Article  CAS  PubMed  Google Scholar 

  36. Czapiga M, Gao JL, Kirk A, Lekstrom-Himes J. Human platelets exhibit chemotaxis using functional N-formyl peptide receptors. Exp Hematol. 2005;33:73–84.

    Article  CAS  PubMed  Google Scholar 

  37. VanCompernolle SE, Clark KL, Rummel KA, Todd SC. Expression and function of formyl peptide receptors on human fibroblast cells. J Immunol. 2003;171:2050–6.

    Article  CAS  PubMed  Google Scholar 

  38. Perretti M, Croxtall JD, Wheller SK, Goulding NJ, Hannon R, Flower RJ. Mobilizing lipocortin 1 in adherent human leukocytes downregulates their transmigration. Nat Med. 1996;22:1259–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vito de Novellis or Vincenzo Pavone.

Additional information

Responsible Editor: Bernhard Gibbs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boccella, S., Panza, E., Lista, L. et al. Preclinical evaluation of the urokinase receptor-derived peptide UPARANT as an anti-inflammatory drug. Inflamm. Res. 66, 701–709 (2017). https://doi.org/10.1007/s00011-017-1051-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-017-1051-5

Keywords

Navigation