Skip to main content

Advertisement

Log in

K+ channel blocker-induced neuroinflammatory response and neurological disorders: immunomodulatory effects of astaxanthin

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Channelopathies due to the brain ion channel dysfunction is considered to be an important mechanism involved in various neurodegenerative diseases. In this study, we evaluated the ability of kaliotoxin (KTX) as K+ channel blocker to induce neuro-inflammatory response and neurodegenerative alteration. We also investigate the effects of astaxanthin (ATX) against KTX disorders.

Material and treatment

NMRI mice were injected with KTX (1 pg/kg, by i.c.v route) with or without pretreatment using ATX (80 mg/kg, o.p route).

Results

Results showed that KTX was detected in cerebral cortex area due to its binding to the specific receptors (immunofluorescence analysis). It induced an activation of inflammatory cascade characterized by an increase of IL-6, TNFα, NO, MDA levels and NF-κB expression associated to a decrease of GSH level. The neuroinflammatory response is accompanied with cerebral alterations and blood–brain barrier (BBB) disruption. The use of ATX prior to the KTX exerts a preventive effect not only on the neuroinflammation but also on altered tissues and the BBB disruption.

Conclusions

Kaliotoxin is able to induce neurological disorders by blocking the K+ ion channel, and ATX suppresses this alterations with down regulation of IL-6, TNF-α and NF-κB expression in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Laraba-Djebari F, Legros C, Crest M, Ceard B, Romi R, Mansuelle P, et al. The kaliotoxin family enlarged. Purification, characterization, and precursor nucleotide sequence of KTX2 from Androctonus australis venom. J Biol Chem. 1994;269:32835–43.

    CAS  PubMed  Google Scholar 

  2. Ladjel-Mendil A, Martin-Eauclaire MF, Laraba-Djebari F. Neuropathophysiological effect and immuno-inflammatory response induced by kaliotoxin of Androctonus scorpion venom. Neuroimmunomodulation. 2013;20:99–106.

    Article  CAS  PubMed  Google Scholar 

  3. Taibi-Djennah Z, Matin-Eauclaire MF, Laraba-Djebari F. Systemic responses following brain injuries and inflammatory process activation induced by a neurotoxin of Androctonus scorpion venom. Neuroimmunomodulation. 2015;22(6):347–57.

    Article  CAS  PubMed  Google Scholar 

  4. Juhng KN, Kokate TG, Yamaguchi S, Kim BY, Rogowski RS, Blaustein MP, et al. Induction of seizures by the potent K+ channel-blocking scorpion venom peptide toxins tityustoxin-K(alpha) and pandinustoxin-K(alpha). Epilepsy Res. 1999;34:177–86.

    Article  CAS  PubMed  Google Scholar 

  5. Mazzuca M, Lesage F, Lazdunski M. Canaux ioniques et épilepsies. Epileptic Disord. 2004;6(1):1–16.

    Google Scholar 

  6. Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006;147(Suppl 1):S232–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ravizza T, Balosso S, Vezzani A. Inflammation and prevention of epileptogenesis. Neurosci Lett. 2011;497:223–30.

    Article  CAS  PubMed  Google Scholar 

  8. Croll SD, Goodman JH, Scharfman HE. Vascular endothelial growth factor (VEGF) in seizures: a double-edged sword. Adv Exp Med Biol. 2004;548:57–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vezzani A, Aronica E, Mazarati A, Pittman QJ. Epilepsy and brain inflammation. Exp Neurol. 2013;244:11–21.

    Article  CAS  PubMed  Google Scholar 

  10. Desport JC. Home artificial nutrition in chronic neurological disorders. Clin Nutr. 2002;21:97–8 (author reply 98–99).

    Article  CAS  PubMed  Google Scholar 

  11. Bouayed J, Bohn T. Exogenous antioxidants—double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev. 2010;3:228–37.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lucke-Wold BP, Nguyen L, Turner RC, Logsdon AF, Chen YW, Smith KE, et al. Traumatic brain injury and epilepsy: underlying mechanisms leading to seizure. Seizure J Br Epilepsy Assoc. 2015;33:13–23.

    Article  Google Scholar 

  13. Gelain DP, Antonio Behr G, Birnfeld de Oliveira R, Trujillo M. Antioxidant therapies for neurodegenerative diseases: mechanisms, current trends, and perspectives. Oxid Med Cell Longev. 2012;2012:895153.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sandhir R, Yadav A, Sunkaria A, Singhal N. Nano-antioxidants: an emerging strategy for intervention against neurodegenerative conditions. Neurochem Int. 2015;89:209–26.

    Article  CAS  PubMed  Google Scholar 

  15. Rao AV, Rao LG. Carotenoids and human health. Pharmacol Res Off J Ital Pharmacol Soc. 2007;55:207–16.

    CAS  Google Scholar 

  16. Palozza P, Krinsky NI. Antioxidant effects of carotenoids in vivo and in vitro: an overview. Methods Enzymol. 1992;213:403–20.

    Article  CAS  PubMed  Google Scholar 

  17. Moreno I, Pichardo S, Jos A, Gomez-Amores L, Mate A, Vazquez CM, et al. Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally. Toxicon Off J Int Soc Toxinol. 2005;45:395–402.

    Article  CAS  Google Scholar 

  18. Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology. 1974;11:151–69.

    Article  CAS  PubMed  Google Scholar 

  19. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6.

    Article  CAS  PubMed  Google Scholar 

  20. Yang C, Zhang X, Fan H, Liu Y. Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res. 2009;1282:133–41.

    Article  CAS  PubMed  Google Scholar 

  21. Alves da Silva JA, Oliveira KC, Camillo MA. Gyroxin increases blood-brain barrier permeability to Evans blue dye in mice. Toxicon Off J Int Soc Toxinol. 2011;57:162–7.

    Article  CAS  Google Scholar 

  22. Bradley PP, Priebat DA, Christensen RD, Rothstein G. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol. 1982;78:206–9.

    Article  CAS  PubMed  Google Scholar 

  23. Lee R, Margaritis M, Channon KM, Antoniades C. Evaluating oxidative stress in human cardiovascular disease: methodological aspects and considerations. Curr Med Chem. 2012;19:2504–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yuste JE, Tarragon E, Campuzano CM, Ros-Bernal F. Implications of glial nitric oxide in neurodegenerative diseases. Front Cell Neurosci. 2015;9:322.

    Article  PubMed  PubMed Central  Google Scholar 

  25. El Assar M, Angulo J, Rodriguez-Manas L. Oxidative stress and vascular inflammation in aging. Free Radic Biol Med. 2013;65:380–401.

    Article  PubMed  Google Scholar 

  26. Circu ML, Aw TY. Glutathione and apoptosis. Free Radical Res. 2008;42:689–706.

    Article  CAS  Google Scholar 

  27. Glorieux C, Zamocky M, Sandoval JM, Verrax J, Calderon PB. Regulation of catalase expression in healthy and cancerous cells. Free Radic Biol Med. 2015;87:84–97.

    Article  CAS  PubMed  Google Scholar 

  28. Weiss N, Miller F, Cazaubon S, Couraud PO. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta. 2009;1788:842–57.

    Article  CAS  PubMed  Google Scholar 

  29. Lecuyer MA, Kebir H, Prat A. Glial influences on BBB functions and molecular players in immune cell trafficking. Biochimica Biophys Acta. 2016;1862(3):472–82.

    Article  CAS  Google Scholar 

  30. van Vliet EA, Aronica E, Gorter JA. Blood-brain barrier dysfunction, seizures and epilepsy. Semin Cell Dev Biol. 2015;38:26–34.

    Article  PubMed  Google Scholar 

  31. Kullmann DM. The neuronal channelopathies. Brain J Neurol. 2002;125:1177–95.

    Article  Google Scholar 

  32. Brenner R, Wilcox KS. Potassium channelopathies of epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper’s basic mechanisms of the epilepsies. Bethesda: National Center for Biotechnology Information; 2012.

    Google Scholar 

  33. Zhu X, Dong J, Shen K, Bai Y, Zhang Y, Lv X, et al. NMDA receptor NR2B subunits contribute to PTZ-kindling-induced hippocampal astrocytosis and oxidative stress. Brain Res Bull. 2015;114:70–8.

    Article  CAS  PubMed  Google Scholar 

  34. Morigiwa K, Fukuda Y, Yamashita M. Neurotransmitter ATP and cytokine release. Nihon Yakurigaku Zasshi Folia Pharmacol Jpn. 2000;115:185–92.

    Article  CAS  Google Scholar 

  35. Meffert MK, Chang JM, Wiltgen BJ, Fanselow MS, Baltimore D. NF-kappa B functions in synaptic signaling and behavior. Nat Neurosci. 2003;6:1072–8.

    Article  CAS  PubMed  Google Scholar 

  36. Li W, Suwanwela NC, Patumraj S. Curcumin by down regulating NF-kB and elevating Nrf2, reduces brain edema and neurological dysfunction after cerebral I/R. Microvasc Res. 2015.

  37. Jin W, Wang J, Zhu T, Yuan B, Ni H, Jiang J, et al. Anti-inflammatory effects of curcumin in experimental spinal cord injury in rats. Inflamm Res Off J Eur Histamine Res Soc. 2014;63:381–7.

    CAS  Google Scholar 

  38. Sun W, Liu J, Huan Y, Zhang C. Intracranial injection of recombinant stromal-derived factor-1 alpha (SDF-1alpha) attenuates traumatic brain injury in rats. Inflamm Res Off J Eur Histamine Res Soc. 2014;63:287–97.

    CAS  Google Scholar 

  39. Yang XL, Kim CK, Kim TJ, Sun J, Rim D, Kim YJ, et al. Anti-inflammatory effects of fimasartan via Akt, ERK, and NFkappaB pathways on astrocytes stimulated by hemolysate. Inflamm Res Off J Eur Histamine Res Soc. 2016;65:115–23.

    CAS  Google Scholar 

  40. McGuire C, Prinz M, Beyaert R, van Loo G. Nuclear factor kappa B (NF-kappaB) in multiple sclerosis pathology. Trends Mol Med. 2013;19:604–13.

    Article  CAS  Google Scholar 

  41. Miller JA, Kirkley KA, Padmanabhan R, Liang LP, Raol YH, Patel M, et al. Repeated exposure to low doses of kainic acid activates nuclear factor kappa B (NF-kappaB) prior to seizure in transgenic NF-kappaB/EGFP reporter mice. Neurotoxicology. 2014;44:39–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu YC, Sun Q, Li W, Zhang DD, Ma B, Li S, et al. Biphasic activation of nuclear factor kappa B and expression of p65 and c-Rel after traumatic brain injury in rats. Inflamm Res Off J Eur Histamine Res Soc. 2014;63:109–15.

    CAS  Google Scholar 

  43. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford: Oxford University Press; 1999. p. 936.

    Google Scholar 

  44. Bhuyan P, Patel DC, Wilcox KS, Patel M. Oxidative stress in murine Theiler’s virus-induced temporal lobe epilepsy. Exp Neurol. 2015;271:329–34.

    Article  CAS  PubMed  Google Scholar 

  45. Dal-Pizzol F, Klamt F, Vianna MM, Schroder N, Quevedo J, Benfato MS, et al. Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acid in Wistar rats. Neurosci Lett. 2000;291:179–82.

    Article  CAS  PubMed  Google Scholar 

  46. Sgaravatti AM, Magnusson AS, Oliveira AS, Mescka CP, Zanin F, Sgarbi MB, et al. Effects of 1,4-butanediol administration on oxidative stress in rat brain: study of the neurotoxicity of gamma-hydroxybutyric acid in vivo. Metab Brain Dis. 2009;24:271–82.

    Article  CAS  PubMed  Google Scholar 

  47. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.

    Article  CAS  PubMed  Google Scholar 

  48. Schreibelt G, Kooij G, Reijerkerk A, van Doorn R, Gringhuis SI, van der Pol S, et al. Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J Off Pub Feder Am Soc Exp Biol. 2007;21:3666–76.

    CAS  Google Scholar 

  49. Lochhead JJ, McCaffrey G, Quigley CE, Finch J, DeMarco KM, Nametz N, et al. Oxidative stress increases blood-brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2010;30:1625–36.

    Article  CAS  Google Scholar 

  50. Rochfort KD, Collins LE, Murphy RP, Cummins PM. Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions. PLoS ONE. 2014;9:e101815.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vezzani A, Balosso S, Ravizza T. The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun. 2008;22:797–803.

    Article  CAS  PubMed  Google Scholar 

  52. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saito K, Suyama K, Nishida K, Sei Y, Basile AS. Early increases in TNF-alpha, IL-6 and IL-1 beta levels following transient cerebral ischemia in gerbil brain. Neurosci Lett. 1996;206:149–52.

    Article  CAS  PubMed  Google Scholar 

  54. Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20:34–50.

    Article  CAS  PubMed  Google Scholar 

  55. Holman DW, Klein RS, Ransohoff RM. The blood-brain barrier, chemokines and multiple sclerosis. Biochim Biophys Acta. 2011;1812:220–30.

    Article  CAS  PubMed  Google Scholar 

  56. Ullen A, Singewald E, Konya V, Fauler G, Reicher H, Nusshold C, et al. Myeloperoxidase-derived oxidants induce blood-brain barrier dysfunction in vitro and in vivo. PLoS ONE. 2013;8:e64034.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dheen ST, Kaur C, Ling EA. Microglial activation and its implications in the brain diseases. Curr Med Chem. 2007;14:1189–97.

    Article  CAS  PubMed  Google Scholar 

  58. Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2010;125:S73–80.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lee DH, Lee YJ, Kwon KH. Neuroprotective effects of astaxanthin in oxygen-glucose deprivation in SH-SY5Y cells and global cerebral ischemia in rat. J Clin Biochem Nutr. 2010;47:121–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guerra BA, Otton R. Impact of the carotenoid astaxanthin on phagocytic capacity and ROS/RNS production of human neutrophils treated with free fatty acids and high glucose. Int Immunopharmacol. 2011;11:2220–6.

    Article  CAS  PubMed  Google Scholar 

  61. Wu W, Wang X, Xiang Q, Meng X, Peng Y, Du N, et al. Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels. Food Funct. 2014;5:158–66.

    Article  CAS  PubMed  Google Scholar 

  62. Lee DH, Kim CS, Lee YJ. Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem Toxicol Int J Pub Br Ind Biol Res Assoc. 2011;49:271–80.

    Article  CAS  Google Scholar 

  63. Ye Q, Huang B, Zhang X, Zhu Y, Chen X. Astaxanthin protects against MPP(+)-induced oxidative stress in PC12 cells via the HO-1/NOX2 axis. BMC Neurosci. 2012;13:156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pashkow FJ, Watumull DG, Campbell CL. Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol. 2008;101:58D–68D.

    Article  CAS  PubMed  Google Scholar 

  65. Sawicka-Glazer E, Czuczwar SJ. Vitamin C: a new auxiliary treatment of epilepsy? Pharmacol Rep PR. 2014;66:529–33.

    Article  CAS  PubMed  Google Scholar 

  66. Xavier SM, Barbosa CO, Barros DO, Silva RF, Oliveira AA, Freitas RM. Vitamin C antioxidant effects in hippocampus of adult Wistar rats after seizures and status epilepticus induced by pilocarpine. Neurosci Lett. 2007;420:76–9.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang XS, Zhang X, Wu Q, Li W, Wang CX, Xie GB, et al. Astaxanthin offers neuroprotection and reduces neuroinflammation in experimental subarachnoid hemorrhage. J Surg Res. 2014;192:206–13.

    Article  CAS  PubMed  Google Scholar 

  68. Kim YH, Koh HK, Kim DS. Down-regulation of IL-6 production by astaxanthin via ERK-, MSK-, and NF-kappaB-mediated signals in activated microglia. Int Immunopharmacol. 2010;10:1560–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Laraba-Djebari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sifi, N., Martin-Eauclaire, MF. & Laraba-Djebari, F. K+ channel blocker-induced neuroinflammatory response and neurological disorders: immunomodulatory effects of astaxanthin. Inflamm. Res. 65, 623–634 (2016). https://doi.org/10.1007/s00011-016-0945-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-0945-y

Keywords

Navigation