Skip to main content

Advertisement

Log in

TGF-β signaling is activated in patients with chronic HBV infection and repressed by SMAD7 overexpression after successful antiviral treatment

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objectives

Although animal studies demonstrated that Smad7 induction ameliorates TGF-β/SMAD-mediated fibrogenesis, its role in human hepatic diseases is rather obscure. Our study explored the activation status of TGF-β/activin pathway in patients with chronic liver diseases, and how it is affected by successful antiviral treatment in chronic HBV hepatitis (CHB).

Methods

Thirty-seven CHB patients (19 with active disease, 14 completely remitted on long-term antiviral treatment and 4 with relapse after treatment withdrawal), 18 patients with chronic HCV hepatitis, 12 with non-alcoholic fatty liver disease (NAFLD), and 3 controls were enrolled in the study. Liver mRNA levels of CTGF, all TGF-β/activin isoforms, their receptors and intracellular mediators (SMADs) were evaluated using qRT-PCR and were correlated with the grade of liver inflammation and fibrosis staging. The expression and localization of pSMAD2 and pSMAD3 were assessed by immunohistochemistry.

Results

TGF-β signalling is activated in CHB patients with active disease, while SMAD7 is up-regulated during the resolution of inflammation after successful treatment. SMAD7 overexpression was also observed in NAFLD patients exhibiting no or minimal fibrosis, despite the activation of TGF-β/activin signaling.

Conclusions

SMAD7 overexpression might represent a mechanism limiting TGF-β-mediated fibrogenesis in human hepatic diseases; therefore, SMAD7 induction likely represents a candidate for novel therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Friedman SL. Liver fibrosis–from bench to bedside. J Hepatol. 2003;38(Suppl. 1):S38–53.

    Article  PubMed  Google Scholar 

  2. Marra F. Chemokines in liver inflammation and fibrosis. Front Biosci. 2002;7:1899–914.

    Article  Google Scholar 

  3. Castilla A, Prieto J, Fausto N. Transforming growth factors beta 1 and alpha in chronic liver disease. Effects of interferon alfa therapy. N Engl J Med. 1992;324:933–40.

    Article  Google Scholar 

  4. Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. Front Biosci. 2002;7:793–807.

    Article  Google Scholar 

  5. Williams EJ, Gaça MD, Brigstock DR, Arthur MJ, Benyon RC. Increased expression of connective tissue growth factor in fibrotic human liver and in activated hepatic stellate cells. J Hepatol. 2000;32:754–61.

    Article  CAS  PubMed  Google Scholar 

  6. Paradis V, Dargere D, Vidaud M, De Gouville AC, Huet S, Martinez V, et al. Expression of connective tissue growth factor in experimental rat and human liver fibrosis. Hepatology. 1999;30:968–76.

    Article  CAS  PubMed  Google Scholar 

  7. Shek FW, Benyon RC. How can transforming growth factor beta be targeted usefully to combat liver fibrosis? Eur J Gastroenterol Hepatol. 2004;16:123–6.

    Article  CAS  PubMed  Google Scholar 

  8. Roulot D, Durand H, Coste T, Rautureau J, Strosberg AD, Benarous R, et al. Quantitative analysis of transforming growth factor beta1 messenger RNA in the liver of patients with chronic hepatitis C: absence of correlation between high levels and severity of disease. Hepatology. 1995;21:298–304.

    CAS  PubMed  Google Scholar 

  9. Heldin C, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390:465–71.

    Article  CAS  PubMed  Google Scholar 

  10. Flanders KC. Smad3 as a mediator of the fibrotic response. Int J Exp Pathol. 2004;85:47–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kretschmer A, Moepert K, Dames S, Sternberger M, Kaufmann J, Klippel A. Differential regulation of TGF-beta signaling through Smad2, Smad3 and Smad4. Oncogene. 2003;22:6748–63.

    Article  CAS  PubMed  Google Scholar 

  12. Inagaki Y, Mamura M, Kanamaru Y, Greenwel P, Nemoto T, Takehara K, et al. Constitutive phosphorylation and nuclear localization of Smad3 are correlated with increased collagen gene transcription in activated hepatic stellate cells. J Cell Physiol. 2001;187:117–23.

    Article  CAS  PubMed  Google Scholar 

  13. Choi SH, Hwang SB. Modulation of the transforming growth factor-β signal transduction pathway by hepatitis C virus nonstructural 5A protein. J Biol Chem. 2006;281:7468–78.

    Article  CAS  PubMed  Google Scholar 

  14. Lee DK, Park SH, Yi Y, Choi SG, Lee C, Parks WT, et al. The hepatitis B virus encoded oncoprotein pX amplifies TGF-beta family signaling through direct interaction with Smad4: potential mechanism of hepatitis B virus-induced liver fibrosis. Genes Dev. 2001;15:455–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hanyu A, Ishidou Y, Ebisawa T, Shimanuki T, Imamura T, Miyazono K. The N domain of Smad7 is essential for specific inhibition of transforming growth factor-beta signaling. J Cell Biol. 2001;155:1017–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ishisaki A, Yamato K, Hashimoto S, Nakao A, Tamaki K, Nonaka K, et al. Differential inhibition of Smad6 and Smad7 on bone morphogenetic protein- and activin mediated growth arrest and apoptosis in B cells. J Biol Chem. 1999;274:13637–42.

    Article  CAS  PubMed  Google Scholar 

  17. Dooley S, Hamzavi J, Breitkopf K, Wiercinska E, Said HM, Lorenzen J, et al. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology. 2003;125:178–91.

    Article  CAS  PubMed  Google Scholar 

  18. Tahashi Y, Matsuzaki K, Date M, Yoshida K, Furukawa F, Sugano Y, et al. Differential regulation of TGF-beta rignal in hepatic stellate cells between acute and chronic rat liver injury. Hepatology. 2002;35:49–61.

    Article  CAS  PubMed  Google Scholar 

  19. Dooley S, Hamzavi J, Ciuclan L, Godoy P, Ilkavets I, Ehnert S, et al. Hepatocyte-specific Smad7 expression attenuates TGFb-mediated fibrogenesis and protects against liver damage. Gastroenterology. 2008;135:642–59.

    Article  CAS  PubMed  Google Scholar 

  20. Tang LX, He RH, Yang G, Tan JJ, Zhou L, Meng XM, et al. Asiatic acid inhibits liver fibrosis by blocking TGF-beta/Smad signaling in vivo and in vitro. PLoS One. 2012;7:e31350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dong C, Zhu S, Wang T, Yoon W, Li Z, Alvarez RJ, et al. Deficient Smad7 expression: a putative molecular defect in scleroderma. Proc Natl Acad Sci USA. 2002;99(6):3908–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. del Pilar Alatorre-Carranza M, Miranda-Diaz A, Yanez-Sánchez I, Pizano-Martinez O, Hermosillo-Sandoval JM, Vazquez-Del Mercado M, et al. Liver fibrosis secondary to bile duct injury: correlation of Smad7 with TGF-beta and extracellular matrix proteins. BMC Gastroenterol. 2009;9:81.

    Article  Google Scholar 

  23. Ribeiro RM, Germanidis G, Powers KA, Pellegrin B, Nikolaidis P, Perelson AS, et al. Hepatitis B virus kinetics under antiviral therapy sheds light on differences in hepatitis B e antigen positive and negative infections. J Infect Dis. 2010;202:1309–18.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Speletas M, Argentou N, Germanidis G, Vasiliadis T, Mantzoukis K, Patsiaoura K, et al. Foxp3 expression in liver correlates with the degree but not the cause of inflammation. Mediators Inflamm. 2011;2011:827565.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Germanidis G, Argentou N, Hytiroglou P, Vassiliadis T, Patsiaoura K, Germenis AE, et al. Liver FOXP3 and PD1/PDL1 expression is down-regulated in chronic HBV hepatitis on maintained remission related to the degree of inflammation. Front Immunol. 2013;25:207.

    Google Scholar 

  26. Ishak K, Baptista A, Bianchi L, Callea F, De Groote J, Gudat F, et al. Histological grading and staging of chronic hepatitis. J Hepatol. 1995;22:696–9.

    Article  CAS  PubMed  Google Scholar 

  27. Brunt EM, Janney CG, di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94:2467–74.

    Article  CAS  PubMed  Google Scholar 

  28. Apostolou E, Stavropoulos A, Sountoulidis A, Xirakia C, Giaglis S, Protopapadakis E, et al. Activin-A overexpression in the murine lung causes pathology that simulates acute respiratory distress syndrome. Am J Respir Crit Care Med. 2012;15:382–91.

    Article  Google Scholar 

  29. Manojlovic Ζ, Stefanovic B. A novel role of RNA helicase A in regulation of translation of type I collagen mRNAs. RNA. 2012;18:321–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alessi MC, Bastelica D, Morange P, Berthet B, Leduc I, Verdier M, et al. Plasminogen activator inhibitor 1, transforming growth factor-1, and BMI are closely associated in human adipose tissue during morbid obesity. Diabetes. 2000;49:1374–80.

    Article  CAS  PubMed  Google Scholar 

  31. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real time quantitative PCR and the 2T method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  32. Stopa M, Anhuf D, Terstegen L, Gatsios P, Gressner AM, Dooley S. Participation of Smad2, Smad3, and Smad4 in transforming growth factor beta (TGF-beta)-induced activation of Smad7, The TGF-beta response element of the promoter requires functional Smad binding element and E-box sequences for transcriptional regulation. J Biol Chem. 2000;275:29308–17.

    Article  CAS  PubMed  Google Scholar 

  33. Dooley S, Streckert M, Delvoux B, Gressner AM. Expression of Smads during in vitro transdifferentiation of hepatic stellate cells to myofibroblasts. Biochem Biophys Res Commun. 2001;283:554–62.

    Article  CAS  PubMed  Google Scholar 

  34. Massague J, Chen YG. Review Controlling TGF-beta signaling. Genes Dev. 2000;14:627–44.

    CAS  PubMed  Google Scholar 

  35. Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell. 2000;6:1365–75.

    Article  CAS  PubMed  Google Scholar 

  36. Hong S, Lim S, Li AG, Lee C, Lee YS, Lee EK, et al. Smad7 binds to the adaptors TAB 2 and TAB 3 to block recruitment of the kinase TAK1 to the adaptor TRAF2. Nat Immunol. 2007;8:504–13.

    Article  CAS  PubMed  Google Scholar 

  37. Ka SM, Huang XR, Lan HY, Tsai PY, Yang SM, Shui HA, et al. Smad7 gene therapy ameliorates an autoimmune crescentic glomerulonephritis in mice. J Am Soc Nephrol. 2007;18:1777–88.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu L, Wang L, Wang X, Luo X, Yang L, Zhang R, et al. Hepatic deletion of Smad7 in mouse leads to spontaneous liver dysfunction and aggravates alcoholic liver injury. PLoS One. 2011;6:e17415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fantini MC, Rizzo A, Fina D, Caruso R, Sarra M, Stolfi C, et al. Smad7 controls resistance of colitogenic T cells to regulatory T cell-mediated suppression. Gastroenterology. 2009;136:1308–16.

    Article  CAS  PubMed  Google Scholar 

  40. Boirivant M, Pallone F, Di Giacinto C, Fina D, Monteleone I, Marinaro M, et al. Inhibition of Smad7 with a specific antisense oligonucleotide facilitates TGF-beta1-mediated suppression of colitis. Gastroenterology. 2006;131:1786–98.

    Article  CAS  PubMed  Google Scholar 

  41. Weng H, Mertens PR, Gressner AM, Dooley S. IFN-gamma abrogates profibrogenic TGF-beta signaling in liver by targeting expression of inhibitory and receptor Smads. J Hepatol. 2007;46:295–303.

    Article  CAS  PubMed  Google Scholar 

  42. Bitzer M, von Gersdorff G, Liang D, Dominguez-Rosales A, Beg AA, Rojkind M, et al. A mechanism of suppression of TGF-beta/SMAD signaling by NF-kappa B/RelA. Genes Dev. 2000;14:187–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010;207:1589–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marquez RT, Bandyopadhyay S, Wendlandt EB, Keck K, Hoffer BA, Icardi MS, et al. Correlation between microRNA expression levels and clinical parameters associated with chronic hepatitis C viral infection in humans. Lab Invest. 2010;90:1727–36.

    Article  CAS  PubMed  Google Scholar 

  45. Chatterjee R, Mitra A. An overview of effective therapies and recent advances in biomarkers for chronic liver diseases and associated liver cancer. Int Immunopharmacol. 2015;24:335–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors want to thank Dr S. Anastasiadis for collecting patients’ samples and Dr A. Stavropoulos for his excellent technical support.

This research has been co-financed by the ESF and Greek national funds through the Operational Program “Education and Lifelong Learning” of the NSRF–Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund, and was also granted by the Research Committee of Aristotle University of Thessaloniki. PS and EA were also supported by a grant (TGF-LUNG-CURE 3451) from the ARISTEIA II program which has been co-financed by the European Union (European Social Fund–ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF).

Authors’ contribution

Study concept and design: MS, AEG; acquisition of data: AN, EA, PH; analysis and interpretation of data: NA, GG, PH, MS; drafting of the manuscript: NA, GG, MS; critical revision of the manuscript for important intellectual content: GG, PS, PH, AEG; statistical analysis: AN, MS; obtained funding: NA, GG, TV, PS, MS; technical, or material support: GG, TV, KP; study supervision: MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthaios Speletas.

Ethics declarations

Conflict of interest

None in connection with the submitted manuscript.

Additional information

Responsible Editor: Artur Bauhofer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1849 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argentou, N., Germanidis, G., Hytiroglou, P. et al. TGF-β signaling is activated in patients with chronic HBV infection and repressed by SMAD7 overexpression after successful antiviral treatment. Inflamm. Res. 65, 355–365 (2016). https://doi.org/10.1007/s00011-016-0921-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-0921-6

Keywords

Navigation