Skip to main content

Advertisement

Log in

Effects of dendritic polyglycerol sulfate on articular chondrocytes

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Introduction

Inflammatory processes driven by cytokines play a crucial role during osteoarthritis (OA) progression. Dendritic polyglycerol sulfate (dPGS) was analyzed in vitro for its effects on articular chondrocytes, cartilage and cytokines involved in the OA process.

Methods

The metabolic activity of cultured human articular chondrocytes stimulated for 24 h with dPGS (10−3–10−6 mol/L) was monitored using AlamarBlue® assay. The dPGS uptake was studied using fluorescence labeled nanoparticles. Further, chondrocytes were either treated with 10−6 M dPGS, TNFα (10 ng/mL) alone or with a combination of both. The influence on extracellular matrix components, pro- and anti-inflammatory cytokines, matrix metalloproteinase (MMP)1 and the anaphylatoxin receptor C3aR was analyzed by RTD-PCR, flow cytometry and ELISA.

Results

Even at higher dosages (10−3 mol/L), dPGS did not influence chondrocytes viability. Uptake of dPGS was successfully monitored in human articular chondrocytes and synovial fibroblasts, penetration into cartilage chips was up to ~50 µm. Cellular treatment with dPGS had no effect on synthesis of pro-inflammatory cytokines TNFα and IL-6, but expression of the anti-inflammatory IL-10 was upregulated. Cotreatment with TNFα and dPGS reduced the TNFα level, while IL-1β, IL-6 and IL-10 expression did not change. Collagen type II gene expression was significantly reduced after preincubating cells with dPGS, but remained unaffected at the protein level.

Conclusion

Results indicate that dPGS could play a role in regulation of cytokines associated with the inflammatory aspect of OA progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol. 2007;213:626–34.

    Article  CAS  PubMed  Google Scholar 

  2. Goldring MB. The role of cytokines as inflammatory mediators in osteoarthritis: lessons from animal models. Conn Tissue Res. 1999;40:1–11.

    Article  CAS  Google Scholar 

  3. Reginato AM, Sanz-Rodriguez C, Diaz A, Dharmavaram RM, Jimenez SA. Transcriptional modulation of cartilage-specific collagen gene expression by interferon gamma and tumour necrosis factor alpha in cultured human chondrocytes. Biochem J. 1993;294(Pt 3):761–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Blasioli N, Kaplan DL. The roles of catabolic factors in the development of osteoarthritis. Tissue Eng Part B Rev. 2014;20:355–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R, Rorabeck C, et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest. 1997;99:1534–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Murphy G, Lee MH. What are the roles of metalloproteinases in cartilage and bone damage? Ann Rheum Dis. 2005;64(Suppl 4):iv44–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Wu W, Billinghurst RC, Pidoux I, Antoniou J, Zukor D, Tanzer M, et al. Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13. Arthritis Rheum. 2002;46:2087–94.

    Article  CAS  PubMed  Google Scholar 

  8. Siebuhr AS, Petersen KK, Arendt-Nielsen L, Egsgaard LL, Eskehave T, Christiansen C, et al. Identification and characterisation of osteoarthritis patients with inflammation derived tissue turnover. Osteoarthr Cartil. 2014;22:44–50.

    Article  CAS  PubMed  Google Scholar 

  9. Dudhia J. Aggrecan, aging and assembly in articular cartilage. Cell Mol Life Sci. 2005;62:2241–56.

    Article  CAS  PubMed  Google Scholar 

  10. Wang Q, Rozelle AL, Lepus CM, Scanzello CR, Song JJ, Larsen DM, et al. Identification of a central role for complement in osteoarthritis. Nat Med. 2011;17(12):1674–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Schulze-Tanzil G, Kohl B, El Sayed K, Arens S, Ertel W, Stolzel K, et al. Anaphylatoxin receptors and complement regulatory proteins in human articular and non-articular chondrocytes: interrelation with cytokines. Cell Tissue Res. 2012;350(3):465–75.

    Article  CAS  PubMed  Google Scholar 

  12. John T, Stahel PF, Morgan SJ, Schulze-Tanzil G. Impact of the complement cascade on posttraumatic cartilage inflammation and degradation. Histol Histopathol. 2007;22(7):781–90.

    CAS  PubMed  Google Scholar 

  13. Yuan Q, Sun L, Li JJ, An CH. Elevated VEGF levels contribute to the pathogenesis of osteoarthritis. BMC Musculoskelet Disord. 2014;15(1):437.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Weinhart M, Gröger D, Enders S, Dernedde J, Haag R. Synthesis of dendritic polyglycerol anions and their efficiency toward L-selectin inhibition. Biomacromolecules. 2011;12:2502–11.

    Article  CAS  PubMed  Google Scholar 

  15. Turk H, Haag R, Alban S. Dendritic polyglycerol sulfates as new heparin analogues and potent inhibitors of the complement system. Bioconjug Chem. 2004;15(1):162–7.

    Article  PubMed  Google Scholar 

  16. Dernedde J, Rausch A, Weinhart M, Enders S, Tauber R, Licha K, et al. Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation. Proc Natl Acad Sci USA. 2010;107:19679–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Weinhart M, Gröger D, Enders S, Riese SB, Dernedde J, Kainthan RK, et al. The role of dimension in multivalent binding events: structure-activity relationship of dendritic polyglycerol sulfate binding to L-selectin in correlation with size and surface charge density. Macromol Biosci. 2011;11:1088–98.

    Article  CAS  PubMed  Google Scholar 

  18. Oishi K, Hamaguchi Y, Matsushita T, Hasegawa M, Okiyama N, Dernedde J, et al. A crucial role of L-selectin in C protein-induced experimental polymyositis of mice. Arthritis Rheum. 2014;66:1864–71.

    Article  CAS  Google Scholar 

  19. Calderon M, Reichert S, Welker P, Licha K, Kratz F, Haag R. Receptor mediated cellular uptake of low molecular weight dendritic polyglycerols. J Biomed Nanotechnol. 2014;10(1):92–9.

    Article  CAS  PubMed  Google Scholar 

  20. Groger D, Paulus F, Licha K, Welker P, Weinhart M, Holzhausen C, et al. Synthesis and biological evaluation of radio and dye labeled amino functionalized dendritic polyglycerol sulfates as multivalent anti-inflammatory compounds. Bioconjug Chem. 2013;24(9):1507–14.

    Article  PubMed  Google Scholar 

  21. Andreas K, Haupl T, Lubke C, Ringe J, Morawietz L, Wachtel A, et al. Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration. Arthritis Res Ther. 2009;11(1):R15.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Andreas K, Lubke C, Haupl T, Dehne T, Morawietz L, Ringe J, et al. Key regulatory molecules of cartilage destruction in rheumatoid arthritis: an in vitro study. Arthritis Res Ther. 2008;10(1):R9.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Thonemann B, Schmalz G, Hiller KA, Schweikl H. Responses of L929 mouse fibroblasts, primary and immortalized bovine dental papilla-derived cell lines to dental resin components. Dental Mater. 2002;18(4):318–23.

    Article  CAS  Google Scholar 

  24. Reichert S, Welker P, Calderon M, Khandare J, Mangoldt D, Licha K, et al. Size-dependant cellular uptake of dendritic polyglycerol. Small. 2011;7(6):820–9.

    Article  CAS  PubMed  Google Scholar 

  25. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Lew M. Good statistical practice in pharmacology Problem 2. Brit J Pharmacol. 2007;152:299–303.

    Article  CAS  Google Scholar 

  27. Rothenfluh DA, Bermudez H, O’Neil CP, Hubbell JA. Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nat Mater. 2008;7:248–54.

    Article  CAS  PubMed  Google Scholar 

  28. Kendrick N. A gene’s mRNA level measured by microarrays or RT-PCR does not necessarily predict its protein level: R2 (or Rs) for plots of mRNA vs. protein is <0.4 2012 [updated 25.06.201214.08.2014]. http://www.kendricklabs.com/WP1_mRNAvsProtein_KendrickLabs.pdf.

  29. Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473:337–42.

    Article  PubMed  Google Scholar 

  30. John T, Müller RD, Oberholzer A, Zreiqat H, Kohl B, Ertel W, et al. Interleukin-10 modulates pro-apoptotic effects of TNF-alpha in human articular chondrocytes in vitro. Cytokine. 2007;40:226–34.

    Article  CAS  PubMed  Google Scholar 

  31. Mrosewski I, Jork N, Gorte K, Conrad C, Wiegand E, Kohl B, et al. Regulation of OA associated key mediators by TNFα and IL-10: effects of IL-10 overexpression in human synovial fibroblasts and a synovial cell line. Cell Tissue Res. 2014;357:207–23.

    Article  CAS  PubMed  Google Scholar 

  32. Muller RD, John T, Kohl B, Oberholzer A, Gust T, Hostmann A, et al. IL-10 overexpression differentially affects cartilage matrix gene expression in response to TNF-alpha in human articular chondrocytes in vitro. Cytokine. 2008;44(3):377–85.

    Article  CAS  PubMed  Google Scholar 

  33. Saklatvala J. Tumour necrosis factor alpha stimulates resorption and inhibits synthesis of proteoglycan in cartilage. Nature. 1986;322:547–9.

    Article  CAS  PubMed  Google Scholar 

  34. Séguin CA, Bernier SM. TNFα suppresses link protein and type II collagen expression in chondrocytes: role of MEK1/2 and NF-κB signaling pathways. J Cell Physiol. 2003;197:356–69.

    Article  PubMed  Google Scholar 

  35. Pelletier J-P, Martel-Pelletier J, Abramson SB. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum. 2001;44:1237–47.

    Article  CAS  PubMed  Google Scholar 

  36. Martel-Pelletier J, Alaaeddine N, Pelletier JP. Cytokines and their role in the pathophysiology of osteoarthritis. Front Biosci. 1999;4:D694–703.

    Article  CAS  PubMed  Google Scholar 

  37. Fernandes JC, Martel-Pelletier J, Pelletier J-P. The role of cytokines in osteoarthritis pathophysiology. Biorheology. 2002;39:237–46.

    CAS  PubMed  Google Scholar 

  38. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier J-P, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumat. 2011;7:33–42.

    Article  CAS  Google Scholar 

  39. Lee AS, Ellman MB, Yan D, Kroin JS, Cole BJ, van Wijnen AJ, et al. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene. 2013;527:440–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the study from the “Freie Universität Berlin” by granting a scholarship (DRS-Promotionsstipendium “Molecular Science”). In addition, funding for equipment used in this study was provided by the Sonnenfeld foundation. In addition, the authors thank Dr. Michaela Endres and Dr. Christian Kaps for providing the HSE cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gundula Schulze-Tanzil.

Additional information

Responsible Editor: Jason J. McDougall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, T., Welker, P., Haag, R. et al. Effects of dendritic polyglycerol sulfate on articular chondrocytes. Inflamm. Res. 64, 917–928 (2015). https://doi.org/10.1007/s00011-015-0875-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-015-0875-0

Keywords

Navigation