Skip to main content

Advertisement

Log in

The role of 15-LOX-1 in colitis and colitis-associated colorectal cancer

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Introduction

Chronic inflammation is known to be mechanistically linked to the development of cancer. This article reviews and discusses the role of 15-lipoxygenase-1 (15-LOX-1) in the resolution of colitis and prevention of colitis-associated colorectal cancer.

Discussion

15-LOX-1 is an inducible and highly regulated enzyme in cells that play an important role in the production of lipid signaling mediators from linoleic acid and arachidonic acid. Together, these acids and 15-LOX-1 are the driving force for the resolution of acute and chronic inflammation in normal cells. Widespread inflammation can progress from local inflammation to ulcerative colitis, tumorigenesis, and finally invasive, metastatic, or benign colon cancer. Thus, reversing inflammation will halt the proliferation of cancerous cells. Decreased expression of 15-LOX-1 may lead to the development of colitis-associated colorectal cancer and colorectal cancer.

Conclusion

n-3 Polyunsaturated fatty acids are potent anti-inflammatory and pro-resolution products of 15-LOX-1 that can potentially prevent colitis-associated colorectal cancer and colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Grechkin A. Recent developments in biochemistry of the plant lipoxygenase pathway. Prog Lipid Res. 1998;37:317–52.

    CAS  PubMed  Google Scholar 

  2. Gerwick WH. Structure and biosynthesis of marine algal oxylipins. Biochim Biophys Acta. 1994;1211:243–55.

    CAS  PubMed  Google Scholar 

  3. Funk CD. The molecular biology of mammalian lipoxygenases and the quest for eicosanoid functions using lipoxygenase-deficient mice. Biochim Biophys Acta. 1996;1304:65–84.

    PubMed  Google Scholar 

  4. Yamamoto S, Suzuki H, Ueda N. Arachidonate 12-lipoxygenases. Prog Lipid Res. 1997;36:23–41.

    CAS  PubMed  Google Scholar 

  5. Andre E, Hou K. Sur la presence dcune oxydase des lipids ou lipoxydase dans la grain de so ja, glycine so ja life. Comptes Rendus. 1932;194:645–7.

    CAS  Google Scholar 

  6. Hamberg M, Samuelsson B. Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proc Natl Acad Sci USA. 1974;71:3400–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Brash AR. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem. 1999;274:23679–82.

    CAS  PubMed  Google Scholar 

  8. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005;7:211–7.

    CAS  PubMed  Google Scholar 

  9. Ford AC, Moayyedi P, Hanauer SB. Ulcerative colitis. BMJ. 2013;346:f432.

    PubMed  Google Scholar 

  10. Fürstenberger G, Krieg P, Müller-Decker K, Habenicht AJR. What are cyclooxygenases and lipoxygenases doing in the driver’s seat of carcinogenesis? Int J Cancer. 2006;119:2247–54.

    PubMed  Google Scholar 

  11. Shureiqi I, Lippman SM. Lipoxygenase modulation to reverse carcinogenesis. Cancer Res. 2001;61:6307–12.

    CAS  PubMed  Google Scholar 

  12. Moussalli MJ, Yuanging W, Zuo X, Xiu LY, Ignacio IW, Maria GR, Jeffrey SM, Jessica LB, John DM, Reuben L, Shureiqi I. Mechanistic contribution of ubiquitous 15-Lipoxygenase-1 expression loss in cancer cells to terminal cell differentiation evasion. Cancer Prev Res (Phila). 2011;4:1961–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Schewe T, Halangk W, Hiebsch C, Rapoport S. Degradation of mitochondria by cytosolic factors in reticulocytes. Acta Biologica et Medica Germanica. 1977;36:563–72.

    CAS  PubMed  Google Scholar 

  14. Kühn H, Brash AR. Occurrence of lipoxygenase products in membranes of rabbit reticulocytes. Evidence for a role of the reticulocyte lipoxygenase in the maturation of red cells. J Biol Chem. 1990;265:1454–8.

    PubMed  Google Scholar 

  15. Van Leyen K, Duvoisin RM, Engelhardt H, Wiedmann M. A function for lipoxygenase in programmed organelle degradation. Nature. 1998;395:392–5.

    PubMed  Google Scholar 

  16. Grullich C, Duvoisin RM, Wiedmann M, van Leyen K. Inhibition of 15-lipoxygenase leads to delayed organelle degradation in the reticulocyte. FEBS Lett. 2001;489:51–4.

    CAS  PubMed  Google Scholar 

  17. Kim KS, Chun HS, Yoon JH, Lee JG, Lee JH, Yoo JB. Expression of 15-lipoxygenase-1 in human nasal epithelium: its implication in mucociliary differentiation. Prostag Leukotr Ess. 2005;73:77–83.

    CAS  Google Scholar 

  18. Hill EM, Eling T, Nettesheim P. Changes in expression of 15-lipoxygenase and prostaglandin-H synthase during differentiation of human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol. 1998;18:662–9.

    CAS  PubMed  Google Scholar 

  19. Choi CK, Sukhthankar M, Kim CH, Lee SH, English A, Kihm KD, Baek SJ. Cell adhesion property affected by cyclooxygenase and lipoxygenase: opto-electric approach. Biochem Bioph Res Co. 2010;391:1385–9.

    CAS  Google Scholar 

  20. Shureiqi I, Jiang W, Zuo X, Wu Y, Stimmel JB, Leesnitzer LM, Morris JS, Fan HZ, Fischer SM, Lippman SM. The 15-lipoxygenase-1 product 13-S-hydroxyoctadecadienoic acid down-regulates PPAR-delta to induce apoptosis in colorectal cancer cells. Proc Natl Acad Sci USA. 2003;100:9968–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Chapkin RS, McMurray DN, Lupton JR. Colon cancer, fatty acids and anti-inflammatory compounds. Curr Opin Gastroen. 2007;23:48–54.

    CAS  Google Scholar 

  22. Brash AR, Boeglin WE, Chang MS. Discovery of a second 15S-lipoxygenase in humans. Proc Natl Acad Sci USA. 1997;94:6148–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Watanabe K, Kawamori T, Nakatsugi S, Ohta T, Ohuchida S, Yamamoto H, Maruyama T, Kondo K, Ushikubi F, Narumiya S, Sugimura T, Wakabayashi K. Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Res. 1999;59:5093–6.

    CAS  PubMed  Google Scholar 

  24. Oh SF, Pillai PS, Recchiuti A, Yang R, Serhan CN. Pro-resolving actions and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine inflammation. J Clin Invest. 2011;121:569–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem. 2003;278:14677–87.

    CAS  PubMed  Google Scholar 

  26. Merched AJ, Ko K, Gotlinger KH, Serhan CN, Chan L. Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. The FASEB J. 2008;22:3595–606.

    CAS  PubMed  Google Scholar 

  27. Serhan CN. Lipoxins and aspirin-triggered 15-epilipoxins are the first lipid mediators of endogenous antiinflammation and resolution. Prostaglandins Leukot Essent Fatty Acids. 2005;73:141–62.

    CAS  PubMed  Google Scholar 

  28. Serhan CN. Resolution phase of inflammation: novel endogenous anti-inflammation and proresolving lipid mediators and pathways. Annu Rev Immunol. 2007;25:101–37.

    CAS  PubMed  Google Scholar 

  29. Kühn H, O’Donnell VB. Inflammation and immune regulation by 12/15-lipoxygenases. Prog Lipid Res. 2006;45:334–56.

    PubMed  Google Scholar 

  30. Nadel JA, Conrad DJ, Ueki IF, Schuster A, Sigal E. Immunocytochemical localization of arachidonate 15-lipoxygenase in erythrocytes, leukocytes, and airway cells. J Clin Invest. 1991;87:1139–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. MacMillan DK, Hill E, Sala A, Sigal E, Shuman T, Henson PM, Murphy RC. Eosinophil 15-lipoxygenase is a leukotriene A4 synthase. J Biol Chem. 1994;269:26663–8.

    CAS  PubMed  Google Scholar 

  32. Spanbroek R, Grabner R, Lotzer K, Hildner M, Urbach A, Ruhling K, Moos MP, Kaiser B, Cohnert TU, Wahlers T, Zieske A, Plenz G, Robenek H, Salbach P, Kuhn H, Radmark O, Samuelsson B, Habenicht AJ. Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis. Proc Natl Acad Sci USA. 2003;100:1238–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Brinckmann R, Topp MS, Zalan I, Heydeck D, Ludwig P, Kühn H, Berdel WE, Habenicht JR. Regulation of 15-lipoxygenase expression in lung epithelial cells by interleukin-4. Biochem J. 1996;318:305–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Spanbroek R, Hildner M, Kohler A, Muller A, Zintl F, Kühn H, Rådmark O, Samuelsson B, Habenicht AJ. IL-4 determines eicosanoid formation in dendritic cells by down-regulation of 5-lipoxygenase and up-regulation of 15-lipoxygenase 1 expression. Proc Natl Acad Sci USA. 2001;98:5152–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Green-Mitchell SM, Tersey SA, Cole BK, Ma K, Kuhn NS, Cunningham TD, Maybee NA, Chakrabarti SK, McDuffie M, Taylor-Fishwick DA, Mirmira RG, Nadler JL, Morris MA. Deletion of 12/15-lipoxygenase alters macrophage and islet function in NOD-Alox15(null) mice, leading to protection against type 1 diabetes development. PLoS One. 2013;8:e56763.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN. Lipid mediator class switching during acute inflammation: signals in resolution. Nat Immunol. 2001;2:612–9.

    CAS  PubMed  Google Scholar 

  37. Zhao H, Zhang X, Chen X, Li Y, Ke Z, Tang T, Chai H, Guo AM, Chen H, Yang J. Isoliquiritigenin, a flavonoid from licorice, blocks M2 macrophage polarization in colitis-associated tumorigenesis through downregulating PGE2 and IL-6. Toxicol Appl Pharmacol. 2014;279:311–21.

    CAS  PubMed  Google Scholar 

  38. Zuo X, Wu Y, Morris JS, Stimmel JB, Leesnitzer LM, Fischer SM, Lippman SM, Shureiqi I. Oxidative metabolism of linoleic acid modulates PPAR-beta/delta suppression of PPAR-gamma activity. Oncogene. 2006;25:1225–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Sasaki T, Fujii K, Yoshida K, Shimura H, Sasahira T, Ohmori H, Kuniyasu H. Peritoneal metastasis inhibition by linoleic acid with activation of PPARγ in human gastrointestinal cancer cells. Virchows Arch. 2006;448:422–7.

    CAS  PubMed  Google Scholar 

  40. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-[gamma] is a negative regulator of macrophage activation. Nature. 1998;391:79–82.

    CAS  PubMed  Google Scholar 

  41. Zuo X, Peng Z, Wu Y, Moussalli MJ, Yang XL, Wang Y, Parker-Thornburg J, Morris JS, Broaddus RR, Fischer SM, Shureiqi I. Effects of gut-targeted 15-LOX-1 transgene expression on colonic tumorigenesis in mice. J Natl Cancer Inst. 2012;104:709–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Shankaranarayanan P, Chaitidis P, Kühn H, Nigam S. Acetylation by histone acetyltransferase CREB-binding protein/p300 of STAT6 is required for transcriptional activation of the 15-lipoxygenase-1 gene. J Biol Chem. 2001;276:42753–60.

    CAS  PubMed  Google Scholar 

  43. Conrad DJ, Lu M. Regulation of human 12/15-lipoxygenase by Stat6-dependent transcription. Am J Respir Cell Mol Biol. 2000;22:226–34.

    CAS  PubMed  Google Scholar 

  44. Liu C, Xu D, Sjöberg J, Björkholm M, Claesson HE. Transcriptional regulation of 15-lipoxygenase expression by promoter methylation. Exp Cell Res. 2004;297:61–7.

    CAS  PubMed  Google Scholar 

  45. Liu C, Xu D, Han H, Fan Y, Schain F, Xu Z, Claesson HE, Björkholm M, Sjöberg J. Transcriptional regulation of 15-lipoxygenase expression by histone h3 lysine 4 methylation/demethylation. PLoS One. 2012;7:e52703.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Hsi LC, Kundu S, Palomo J, Xu B, Ficco R, Vogelbaum MA, Cathcart MK. Silencing IL-13Rα2 promotes glioblastoma cell death via endogenous signaling. Mol Cancer Ther. 2011;10:1149–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Roy B, Bhattacharjee A, Xu B, Ford D, Maizel AL, Cathcart MK. IL-13 signal transduction in human monocytes: phosphorylation of receptor components, association with Jaks, and phosphorylation/activation of Stats. J Leukoc Biol. 2002;72:580–9.

    CAS  PubMed  Google Scholar 

  48. Roy B, Cathcart MK. Induction of 15-lipoxygenase expression by IL-13 requires tyrosine phosphorylation of Jak2 and Tyk2 in human monocytes. J Biol Chem. 1998;273:32023–9.

    CAS  PubMed  Google Scholar 

  49. Lee YW, Kühn H, Kaiser S, Hennig B, Daugherty A, Toborek M. Interleukin 4 induces transcription of the 15-lipoxygenase I gene in human endothelial cells. J Lipid Res. 2001;42:783–91.

    CAS  PubMed  Google Scholar 

  50. Munger KA, Montero A, Fukunaga M, Uda S, Yura T, Imai E, Kaneda Y, Valdivielso JM, Badr KF. Transfection of rat kidney with human 15-lipoxygenase suppresses inflammation and preserves function in experimental glomerulonephritis. Proc Natl Acad Sci USA. 1999;96:13375–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Mangino MJ, Brounts L, Harms B, Heise C. Lipoxin biosynthesis in inflammatory bowel disease. Prostag Oth Lipid M. 2006;79:84–92.

    CAS  Google Scholar 

  52. Il Lee S, Zuo X, Shureiqi I. 15-Lipoxygenase-1 as a tumor suppressor gene in colon cancer: is the verdict in? Cancer Metastasis Rev. 2011;30:481–91.

    PubMed  Google Scholar 

  53. Hudert CA, Weylandt KH, Lu Y, Wang J, Hong S, Dignass A, Serhan CN, Kang JX. Transgenic mice rich in endogenous omega-3 fatty acids are protected from colitis. P Natl Acad Sci USA. 2006;103:11276–81.

    CAS  Google Scholar 

  54. Hansen-Petrik MB, McEntee MF, Jull B, Shi H, Zemel MB, Whelan J. Prostaglandin E(2) protects intestinal tumors from nonsteroidal anti-inflammatory drug-induced regression in Apc(Min/+) mice. Cancer Res. 2002;62:403–8.

    CAS  PubMed  Google Scholar 

  55. Spite M, Norling L, Summers L, Yang R, Cooper D, Petasis NA, Flower RJ, Perretti M, Serhan CN. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature. 2009;461:1287–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Ma J, Chen T, Mandelin J, Ceponis A, Miller NE, Hukkanen M, Ma GF, Konttinen YT. Regulation of macrophage activation. Cell Mol Life Sci. 2003;60:2334–46.

    CAS  PubMed  Google Scholar 

  57. Serhan CN, Jain A, Marleau S, Clish C, Kantarci A, Behbehani B, Colgan SP, Stahl GL, Merched A, Petasis NA, Chan L, Van Dyke TE. Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. J Immunol. 2003;171:6856–65.

    CAS  PubMed  Google Scholar 

  58. Saraiva TD, Morais K, Pereira VB, de Azevedo M, Rocha CS, Prosperi CC, Gomes-Santos AC, Bermudez-Humaran L, Faria AM, Blottiere HM, Langella P, Miyoshi A, de LeBlanc Ade M, LeBlanc JG, Azevedo V. Milk fermented with a 15-lipoxygenase-1-producing lactococcus lactis alleviates symptoms of colitis in a murine model. Curr Pharm Biotechnol. 2015;16:424–9.

    CAS  PubMed  Google Scholar 

  59. Reynier M, Sari H, d’Anglebermes M, Kye EA, Pasero L. Differences in lipid characteristics of undifferentiated and enterocytic-differentiated HT29 human colonic cells. Cancer Res. 1991;51:1270–7.

    CAS  PubMed  Google Scholar 

  60. Hendrickse CW, Kelly RW, Radley S, Donovan IA, Keighley MR, Neoptolemos JP. Lipid peroxidation and prostaglandins in colorectal cancer. Br J Surg. 1994;81:1219–23.

    CAS  PubMed  Google Scholar 

  61. Baer AN, Costello PB, Green FA. In vivo activation of an omega-6 oxygenase in human skin. Biochem Biophys Res Commun. 1991;180:98–104.

    CAS  PubMed  Google Scholar 

  62. Sonoshita M, Takaku K, Sasaki N, Sugimoto Y, Ushikubi F, Narumiya S, Oshima M, Taketo MM. Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc(Delta 716) knockout mice. Nat Med. 2001;7:1048–51.

    CAS  PubMed  Google Scholar 

  63. Arita M, Yoshida M, Hong S, Tjonahen E, Glickman JN, Petasis NA, Blumberg RS, Serhan CN. Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc Natl Acad Sci USA. 2005;102:7671–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Bento AF, Claudio RF, Dutra RC, Marcon R, Calixto JB. Omega-3 fatty acid-derived mediators 17(R)-hydroxy docosahexaenoic acid, aspirin-triggered resolvin D1 and resolvin D2 prevent experimental colitis in mice. J Immunol. 2011;187:1957–69.

    CAS  PubMed  Google Scholar 

  65. Das UN, Huang YS, Begin ME, Ells G, Horrobin DF. Uptake and distribution of cis-unsaturated fatty acids and their effect on free radical generation in normal and tumor cells in vitro. Free Radic Biol Med. 1987;3:9–14.

    CAS  PubMed  Google Scholar 

  66. Tjonahen E, Oh SF, Siegelman J, Elangovan S, Percarpio KB, Hong S, Arita M, Serhan CN. Resolvin E2: indentification and anti-inflammatory actions: pivotal role of human 5-lipoxygenase in resolvin E series biosynthesis. Chem Biol. 2006;13:1193–202.

    CAS  PubMed  Google Scholar 

  67. Cho J, Chi SG, Chun HS. Oral administration of docosahexaenoic acid attenuates colitis induced dextran sulfate sodium in mice. Mol Nutr Food Res. 2011;55:239–46.

    CAS  PubMed  Google Scholar 

  68. Oh SF, Dona M, Fredman G, Krishnamoorthy S, Irimia D, Serhan CN. Resolvin E2 formation and impact in inflammation-resolution. J Immunol. 2012;188:4527–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Schwab JM, Chiang N, Arita M, Serhan CN. Resolvin E1 and protectin d1 activate inflammation-resolution programs. Nature. 2007;447:869–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Serhan CN, Chiang N. Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus. Br J Pharmacol. 2008;153(suppl 1):S200–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Hasturk H, Kantarci A, Ohira T, Arita M, Ebrahimi N, Chiang N, Petasis NA, Levy BD, Serhan CN, Van Dyke TE. RvE1 protects from local inflammation and osteoclast-mediated bone destruction in periodontitis. FASEB J. 2006;20:401–3.

    CAS  PubMed  Google Scholar 

  72. Vandivier RW, Henson PM, Douglas IS. Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest. 2006;129:1673–82.

    PubMed  Google Scholar 

  73. Calandria JM, Marcheselli VL, Mukherjee PK, Uddin J, Winkler JW, Petasis NA, Bazan NG. Selective survival rescue in 15-lipoxygenase-1-deficient retinal pigment epithelial cells by the novel docosahexaenoic acid-derived mediator, neuroprotectin D1. J Biol Chem. 2009;284:17877–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Xu MX, Tan BC, Zhuo W, Wei T, Lai WH, Tan JW, Dong JH. Resolvin D1, an endogenous lipid mediator for inactivation of inflammation-related signaling pathway in microglial cells, prevents lipopolysaccharide-induced inflammatory responses. CNS Neurosci Ther. 2013;19:235–43.

    CAS  PubMed  Google Scholar 

  75. Liao Z, Dong J, Wu W, Yang T, Wang T, Guo L, Chen L, Xu D, Wen F. Resolvin D1 attenuates inflammation in lipopolysaccharide-induced acute lung injury through a process involving the PPARy/NF-kB pathway. Resp Res. 2012;13:110.

    CAS  Google Scholar 

  76. Itoh T, Fairall L, Amin K, Inaba Y, Szanto A, Balint BL, Nagy L, Yamamoto K, Schwabe JW. Structural basis for the activation of PPAR gamma by oxidized fatty acids. Nat Struct Mol Biol. 2008;15:924–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Maddox JF, Hachicha M, Takano T, Petasis NA, Fokin VV, Serhan CN. Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a G-protein linked lipoxin A4 receptor. J Biol Chem. 1997;272:6972–8.

    CAS  PubMed  Google Scholar 

  78. Krishnamoorthy S, Recchiuti A, Chiang N, Yacoubian S, Lee CH, Yang R, Petasis NA, Serhan CN. Resolvin D1 binds human phagocytes with evidence for proresolving receptors. PNAS. 2010;107:1660–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Krishnamoorthy S, Recchiuti A, Chiang N, Fredman G, Serhan CN. Resolvin D1 receptor stereoselectivity and regulation of inflammation and proresolving microRNAs. AJP. 2012;180:2018–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Bohr S, Patel S, Sarin D, Irimia D, Yarmush M, Berthiaume F. Resolvin D2 prevents secondary thrombosis and necrosis in a mouse burn wound model. Wound Rep Reg. 2013;21:35–43.

    Google Scholar 

  81. Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediator. Nat Rev Immunol. 2008;8:349–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Sans M, Panes J, Ardite E, Elizalde JI, Arce Y, Elena M, Palacin A, Fernandez-Checa JC, Anderson DC, Lobb R, Pique JM. VCAM-1 and ICAM-1 mediate leukocyte-endothelial cell adhesion in rat experimental colitis. Gastroenterology. 1999;116:874–83.

    CAS  PubMed  Google Scholar 

  83. Soriano A, Salas A, Salas A, Sans M, Gironella M, Elena M, Anderson DC, Pique JM, Panes J. VCAM-1, but not ICAM-1 or MAdCAM-1, immunoblockade ameliorates DSS-induced colitis in mice. Lab Invest. 2000;80:1541–51.

    CAS  PubMed  Google Scholar 

  84. Bazan NG, Calandria JM, Serhan CN. Rescue and repair during photoreceptor cell renewal mediated by docosahexaenoic acid-derived neuroprotectin D1. J Lipid Res. 2010;51:2018–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA. 2004;101:8491–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Gerrits MM, Chen M, Theeuwes M, van Dekken H, Sikkema M, Steyerberg EW, Lingsma HF, Siersema PD, Xia B, Kusters JG, van der Woude CJ, Kuipers EJ. Biomarker-based prediction of inflammatory bowel disease-related colorectal cancer: a case-control study. Cell Oncol (Dordr). 2011;34:107–17.

    CAS  Google Scholar 

  87. Yang X, Zhang F, Wang Y, Cai M, Wang Q, Guo Q, Li Z, Hu R. Oroxylin A inhibits colitis-associated carcinogenesis through modulating the IL-6/STAT3 signaling pathway. Inflamm Bowel Dis. 2013;19:1990–2000.

    PubMed  Google Scholar 

  88. Marnett IJ, De Bois RN. COX-2: target for colon cancer prevention. Annu Rev Pharmacol Toxicol. 2002;42:55–80.

    CAS  PubMed  Google Scholar 

  89. Shureiqi I, Chen D, Day RS, Zuo X, Hochman FL, Ross WA, Cole RA, Moy O, Morris JS, Xiao L, Newman RA, Yang P, Lippman SM. Profiling lipoxygenase metabolism in specific steps of colorectal tumorigenesis. Cancer Prev Res (Philadelphia, Pa.). 2010;3:829–38.

    CAS  Google Scholar 

  90. Ligumsky M, Simon PL, Karmeli F, Rachmilewitz D. Role of interleukin 1 in inflammatory bowel disease—Enhanced production during active disease. Gut. 1990;31:686–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Hodge DR, Hurt EM, Farrar WL. The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer. 2005;41:2502–12.

    CAS  PubMed  Google Scholar 

  92. Mao F, Xu M, Zuo X, Yu J, Xu W, Moussalli MJ, Elias E, Li HS, Watowich SS. Shureiqi I 15-Lipoxygenase-1 suppression of colitis-associated colon cancer through inhibition of the IL-6/STAT3 signaling pathway. FASEB J. 2015;29:2359–70.

    PubMed  Google Scholar 

  93. Dijkstra G, Moshage H, Jansen PL. Blockade of NF-kappaB activation and donation of nitric oxide: new treatment options in inflammatory bowel disease? Scand J Gastroenterol Suppl. 2002;37:37–41.

    CAS  Google Scholar 

  94. Zuo X, Shureiqi I. Eicosanoid profiling in colon cancer: emergence of a pattern. Prostag oth Lipid M. 2013;104–105:139–43.

    Google Scholar 

  95. Viennois E, Chen F, Merlin D. NF-kB pathway in colitis-associated cancers. Transl Gastrointest Cancer. 2013;2:21–9.

    PubMed Central  PubMed  Google Scholar 

  96. Su CG, Wen X, Bailey ST, Jiang W, Rangwala SM, Keilbaugh SA, Flanigan A, Murthy S, Lazar MA, Wu GD. A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. J Clin Invest. 1999;104:383–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Tanaka T, Kohno H, Yoshitani S, Takashima S, Okumura A, Murakami A, Hosokawa M. Ligands for peroxisome proliferator-activated receptors alpha and gamma inhibit chemically induced colitis and formation of aberrant crypt foci in rats. Cancer Res. 2001;61:2424–8.

    CAS  PubMed  Google Scholar 

  98. Bruewer M, Luegering A, Kucharzik T, Parkos CA, Madara JL, Hopkins AM, Nusrat A. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol. 2003;171:6164–72.

    CAS  PubMed  Google Scholar 

  99. Mutoh M, Watanabe K, Kitamura T, Shoji Y, Takahashi M, Kawamori T, Tani K, Kobayashi M, Maruyama T, Kobayashi K, Ohuchida S, Sugimoto Y, Narumiya S, Sugimura T, Wakabayashi K. Involvement of prostaglandin E receptor subtype EP(4) in colon carcinogenesis. Cancer Res. 2002;62:28–32.

    CAS  PubMed  Google Scholar 

  100. Myung SJ, Rerko RM, Yan M, Platzer P, Guda K, Dotson A, Lawrence E, Dannenberg AJ, Lovgren AK, Luo G, Pretlow TP, Newman RA, Willis J, Dawson D, Markowitz SD. 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proc Natl Acad Sci USA. 2006;103:12098–102.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Brenner RR. Nutritional and hormonal factors influencing desaturation of essential fatty acids. Prog Lipid Res. 1981;20:41–7.

    CAS  PubMed  Google Scholar 

  102. Huang YS, Liu JW, Koba K, Anderson SN. N-3 and n-6 fatty acid metabolism in undifferentiated and differentiated human intestine cell line (Caco-2). Mol Cell Biochem. 1995;151:121–30.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91129718), China Postdoctoral Science Foundation (Grant no. 2015M571705), Jiangsu Province’s Outstanding Medical Academic Leader and Sci-tech Innovation Team Program (Grant no. LJ201117), Jiangsu Province’s Project of Scientific and Technological Innovation and Achievements Transformation (Grant no. BL2012055), the Natural Science Foundation of Jiangsu Province for high schools (Grant no. 10KJB310002), Jiangsu Province’s scientific and technological Supporting Program (Grant no. BE2010703), the Scientific Research Foundation of Jiangsu University (Grant no. 10JDG094).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Mao or Wen-Rong Xu.

Ethics declarations

Conflict of interest

No potential conflict of interest relevant to this article was reported.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, F., Wang, M., Wang, J. et al. The role of 15-LOX-1 in colitis and colitis-associated colorectal cancer. Inflamm. Res. 64, 661–669 (2015). https://doi.org/10.1007/s00011-015-0852-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-015-0852-7

Keywords

Navigation