Skip to main content

Advertisement

Log in

Multi-target drugs to address multiple checkpoints in complex inflammatory pathologies: evolutionary cues for novel “first-in-class” anti-inflammatory drug candidates: a reviewer’s perspective

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Inflammation is a complex, metabolically expensive process involving multiple signaling pathways and regulatory mechanisms which have evolved over evolutionary timescale. Addressing multiple targets of inflammation holistically, in moderation, is probably a more evolutionarily viable strategy, as compared to current therapy which addresses drug targets in isolation. Polypharmacology, addressing multiple targets, is commonly used in complex ailments, suggesting the superior safety and efficacy profile of multi-target (MT) drugs. Phenotypic drug discovery, which generated successful MT and first-in-class drugs in the past, is now re-emerging. A multi-pronged approach, which modulates the evolutionarily conserved, robust and pervasive cellular mechanisms of tissue repair, with AMPK at the helm, regulating the complex metabolic/immune/redox pathways underlying inflammation, is perhaps a more viable strategy than addressing single targets in isolation. Molecules that modulate multiple molecular mechanisms of inflammation in moderation (modulating TH cells toward the anti-inflammatory phenotype, activating AMPK, stimulating Nrf2 and inhibiting NFκB) might serve as a model for a novel Darwinian “first-in-class” therapeutic category that holistically addresses immune, redox and metabolic processes associated with inflammatory repair. Such a multimodal biological activity is supported by the fact that several non-calorific pleiotropic natural products with anti-inflammatory action have been incorporated into diet (chiefly guided by the adaptive development of olfacto-gustatory preferences over evolutionary timescales) rendering such molecules, endowed with evolutionarily privileged molecular scaffolds, naturally oriented toward multiple targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Medina-Franco JL, Giulianotti MA, Welmaker GS, Houghten RA. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov Today. 2013;18:495–501.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Zimmermann GR, Lehar J, Keith CT. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today. 2007;12:34–42.

    Article  CAS  PubMed  Google Scholar 

  3. Beejay U, Wolfe M. COX2-selective inhibitors : panacea or flash in the pan. Gastroenterology. 1999;117:1002–5.

    Article  CAS  PubMed  Google Scholar 

  4. Unnikrishnan MK, Veerapur V, Nayak Y, Paul P, Mathew G. Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoids. In: Watson RR, Preedy VR, Zibadi S, editors. Polyphenols in human health and disease. UK: Elsevier; 2014. p. 143–61.

    Chapter  Google Scholar 

  5. Swinney DC. The value of translational biomarkers to phenotypic assays. Front Pharmacol. 2014;5:171.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod. 2007;70:461–77.

    Article  CAS  PubMed  Google Scholar 

  7. Lounkine E, Kutchukian P, Petrone P, Davies JW, Glick M. Chemotography for multi-target SAR analysis in the context of biological pathways. Bioorg Med Chem. 2012;20:5416–27.

    Article  CAS  PubMed  Google Scholar 

  8. Kotz J. Phenotypic screening, take two. Sci Bus Exch. 2012;5(15):1–3.

  9. Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011;10:507–19.

    Article  CAS  PubMed  Google Scholar 

  10. Eder J, Sedrani R, Wiesmann C. The discovery of first-in-class drugs: origins and evolution. Nat Rev Drug Discov. 2014;13:577–87.

    Article  CAS  PubMed  Google Scholar 

  11. Swinney DC. Phenotypic vs. target-based drug discovery for first-in-class medicines. Clin Pharmacol Ther. 2013;93:299–301.

    Article  CAS  PubMed  Google Scholar 

  12. Zheng W, Thorne N, McKew JC. Phenotypic screens as a renewed approach for drug discovery. Drug Discov Today. 2013;18:1067–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Morphy JR, Harris CJ. Designing multi-target drugs. Cambridge: Royal Society of Chemistry; 2012. p. P011–4.

  14. Lu JJ, Pan W, Hu YJ, Wang YT. Multi-target drugs: the trend of drug research and development. PLoS One. 2012;7:e40262.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bolognesi ML. Polypharmacology in a single drug: multitarget drugs. Curr Med Chem. 2013;20:1639–45.

    Article  CAS  PubMed  Google Scholar 

  16. Csermely P, Agoston V, Pongor S. The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci. 2005;26:178–82.

    Article  CAS  PubMed  Google Scholar 

  17. Singhal A, Jie L, Kumar P, Hong GS, Leow MK-S, Paleja B, et al. Metformin as adjunct antituberculosis therapy. Sci Transl Med. 2014;6:263ra159.

    Article  PubMed  Google Scholar 

  18. Morsy MA, Ashour OM, Fouad AA, Abdel-Gaber SA. Gastroprotective effects of the insulin sensitizers rosiglitazone and metformin against indomethacin-induced gastric ulcers in Type 2 diabetic rats. Clin Exp Pharmacol Physiol. 2010;37:173–7.

    Article  CAS  PubMed  Google Scholar 

  19. Kaplan MJ. Cardiovascular complications of rheumatoid arthritis: assessment, prevention, and treatment. Rheum Dis Clin North Am. 2010;36:405–26.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Martin-Martinez MA, Gonzalez-Juanatey C, Castaneda S, Llorca J, Ferraz-Amaro I, Fernandez-Gutierrez B, et al. Recommendations for the management of cardiovascular risk in patients with rheumatoid arthritis: scientific evidence and expert opinion. Semin Arthritis Rheum. 2014;44:1–8.

    Article  PubMed  Google Scholar 

  21. Hardie DG. AMPK: a target for drugs and natural products with effects on both diabetes and cancer. Diabetes. 2013;62:2164–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Okada H, Kuhn C, Feillet H, Bach JF. The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin Exp Immunol. 2010;160:1–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Mor V, Unnikrishnan M. 5′-Adenosine Monophosphate-Activated Protein Kinase and the Metabolic Syndrome. Endocr Metab Immune Disord Drug Targets. 2011;11:206–16.

    Article  CAS  PubMed  Google Scholar 

  24. Mathew G, Thambi M, Unnikrishnan MK. A multimodal Darwinian strategy for alleviating the atherosclerosis pandemic. Med Hypotheses. 2014;82:159–62.

    Article  CAS  PubMed  Google Scholar 

  25. Surh YJ. NF-kappa B and Nrf2 as potential chemopreventive targets of some anti-inflammatory and antioxidative phytonutrients with anti-inflammatory and antioxidative activities. Asia Pac J Clin Nutr. 2008;17(Suppl 1):269–72.

    CAS  PubMed  Google Scholar 

  26. O’Neill LA, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature. 2013;493:346–55.

    Article  PubMed  Google Scholar 

  27. Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. 2012;11:230–41.

    Article  CAS  PubMed  Google Scholar 

  28. Gerriets VA, Rathmell JC. Metabolic pathways in T cell fate and function. Trends Immunol. 2012;33:168–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Bai A, Ma AG, Yong M, Weiss CR, Ma Y, Guan Q, et al. AMPK agonist downregulates innate and adaptive immune responses in TNBS-induced murine acute and relapsing colitis. Biochem Pharmacol. 2010;80:1708–17.

    Article  CAS  PubMed  Google Scholar 

  30. Itoh K, Mochizuki M, Ishii Y, Ishii T, Shibata T, Kawamoto Y, et al. Transcription factor Nrf2 regulates inflammation by mediating the effect of 15-deoxy-Delta(12,14)-prostaglandin J(2). Mol Cell Biol. 2004;24:36–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Mo C, Wang L, Zhang J, Numazawa S, Tang H, Tang X, et al. The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxid Redox Signal. 2014;20:574–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Mathew G. Pharmacological, mechanistic and in silico evaluation of selected novel non-ulcerogenic anti-inflammatory indanedione derivatives. In: Ph.D. Dissertation. Manipal: Manipal University; 2014.

  33. Weiss U. Inflammation. Nature. 2008;454:427.

    Article  CAS  PubMed  Google Scholar 

  34. Spiegel DA. Synthetic immunology to engineer human immunity. Nat Chem Biol. 2010;6:871–2.

    Article  CAS  PubMed  Google Scholar 

  35. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49:1603–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Yang X, Gao X. Role of dendritic cells: a step forward for the hygiene hypothesis. Cell Mol Immunol. 2011;8:12–8.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Hubbell JA, Thomas SN, Swartz MA. Materials engineering for immunomodulation. Nature. 2009;462:449–60.

    Article  CAS  PubMed  Google Scholar 

  38. Motta AC, Vissers JLM, Gras R, Van Esch BCAM, Van Oosterhout AJM, Nawijn MC. GITR signaling potentiates airway hyperresponsiveness by enhancing Th2 cell activity in a mouse model of asthma. Resp Res. 2009;10:93.

    Article  Google Scholar 

  39. Peck A, Mellins ED. Precarious balance: Th17 Cells in host defense. Infect Immun. 2010;78:32–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Zhu J, Paul WE. CD4 T cells: fates, functions, and faults. Blood. 2008;112:1557–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol. 2010;40:1830–5.

    Article  CAS  PubMed  Google Scholar 

  42. Galgani M, Di Giacomo A, Matarese G, La Cava A. The Yin and Yang of CD4(+) regulatory T cells in autoimmunity and cancer. Curr Med Chem. 2009;16:4626–31.

    Article  CAS  PubMed  Google Scholar 

  43. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM. Th17: an effector CD4 T cell lineage review with regulatory T cell ties. Immunity. 2006;24:677–88.

    Article  CAS  PubMed  Google Scholar 

  44. Lee EY, Abbondante S. Tissue-specific tumor suppression by BRCA1. Proc Natl Acad Sci USA. 2014;111:4353–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 2012;367:1098–107.

    Article  CAS  PubMed  Google Scholar 

  46. Kim H, Jung Y, Shin BS, Song H, Bae SH, Rhee SG, et al. Redox regulation of lipopolysaccharide-mediated sulfiredoxin induction, which depends on both AP-1 and Nrf2. J Biol Chem. 2010;285:34419–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Surh YJ, Kundu JK, Na HK. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med. 2008;74:1526–39.

    Article  CAS  PubMed  Google Scholar 

  48. Ueda K, Ueyama T, K-i Yoshida, Kimura H, Ito T, Shimizu Y, et al. Adaptive HNE-Nrf2-HO-1 pathway against oxidative stress is associated with acute gastric mucosal lesions. Am J Physiol Gastrointest Liver Physiol. 2008;295:G460–9.

    Article  CAS  PubMed  Google Scholar 

  49. Hahm KB, Lee HJ, Han Y, Kim EH, Kim YJ. A possible involvement of Nrf2-mediated heme oxygenase-1 up-regulation in protective effect of the proton pump inhibitor pantoprazole against indomethacin-induced gastric damage in rats. BMC Gastroenterol. 2012;12:143.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Buommino E, Donnarumma G, Manente L, De Filippis A, Silvestri F, Iaquinto S, et al. The Helicobacter pylori protein HspB interferes with Nrf2/Keap1 pathway altering the antioxidant response of Ags cells. Helicobacter. 2012;17:417–25.

    Article  CAS  PubMed  Google Scholar 

  51. Williams M, Rangasamy T, Bauer S, Killedar S, Karp M, Kensler T, et al. Disruption of the transcription factor Nrf2 promotes pro-oxidative dendritic cells that stimulate Th2-like immunoresponsiveness upon activation by ambient particulate matter. J Immunol. 2008;181:4545–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Rockwell CE, Zhang M, Fields PE, Klaassen CD. Th2 skewing by activation of Nrf2 in CD4(+) T cells. J Immunol. 2012;188:1630–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Jiang X, Liu X, Greiner J, Szucs SS, Visnick M. Antioxidant inflammation modulators: C-17 homologated oleanolic acid derivatives. Google Patents; 2011.

  54. Crunkhorn S. Deal watch: abbott boosts investment in NRF2 activators for reducing oxidative stress. Nat Rev Drug Discov. 2012;11:96.

    Article  CAS  PubMed  Google Scholar 

  55. Zhu M, Fu Y. The complicated role of NF-kappaB in T-cell selection. Cell Mol Immunol. 2010;7:89–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Mortaz E, Redegeld FA, Nijkamp FP, Engels F. Dual effects of acetyl salicylic acid on mast cell degranulation, expression of COX-2 and release of inflammatory cytokines. Biochem Pharmacol. 2005;69:1049–57.

    Article  CAS  PubMed  Google Scholar 

  57. Tomita M, Irwin KI, Xie ZJ, Santoro TJ. Tea pigments inhibit the production of type 1 (T(H1)) and type 2 (T(H2)) helper T cell cytokines in CD4(+) T cells. Phytother Res. 2002;16:36–42.

    Article  CAS  PubMed  Google Scholar 

  58. Surh Y-J, Kundu JK, Na H-K, Lee J-S. Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutri. 2005;135:2993S–3001S.

    CAS  Google Scholar 

  59. Yu M, Li H, Liu Q, Liu F, Tang L, Li C, et al. Nuclear factor p65 interacts with Keap1 to repress the Nrf2-ARE pathway. Cell Signal. 2011;23:883–92.

    Article  CAS  PubMed  Google Scholar 

  60. Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev. 2009;89:1025–78.

    Article  CAS  PubMed  Google Scholar 

  61. Richter EA, Ruderman NB. AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J. 2009;418:261–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Steinberg GR, Schertzer JD. AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: implications for diabetes and cardiovascular disease. Immunol Cell Biol. 2014;92:340–5.

    Article  CAS  PubMed  Google Scholar 

  63. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+T cell subsets. J Immunol. 2011;186:3299–303.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Michalek RD, Gerriets VA, Nichols AG, Inoue M, Kazmin D, Chang CY, et al. Estrogen-related receptor-alpha is a metabolic regulator of effector T-cell activation and differentiation. Proc Natl Acad Sci USA. 2011;108:18348–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Dong Y, Zhang M, Liang B, Xie Z, Zhao Z, Asfa S, et al. Reduction of AMP-activated protein kinase alpha2 increases endoplasmic reticulum stress and atherosclerosis in vivo. Circulation. 2010;121:792–803.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Isoda K, Young JL, Zirlik A, MacFarlane LA, Tsuboi N, Gerdes N, et al. Metformin inhibits proinflammatory responses and nuclear factor-b in human vascular wall cells. Arterioscler Thromb Vasc Biol. 2006;26:611–7.

    Article  CAS  PubMed  Google Scholar 

  67. Bai A, Yong M, Ma AG, Ma Y, Weiss CR, Guan Q, et al. Novel anti-inflammatory action of 5-aminoimidazole-4-carboxamide ribonucleoside with protective effect in dextran sulfate sodium-induced acute and chronic colitis. J Pharmacol Exp Ther. 2010;333:717–25.

    Article  CAS  PubMed  Google Scholar 

  68. Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, et al. The ancient drug salicylate directly activates AMP-activated protein kinase. Science. 2012;336:918–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Hattori Y, Suzuki K, Hattori S, Kasai K. Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension. 2006;47:1183–8.

    Article  CAS  PubMed  Google Scholar 

  70. Peairs A, Radjavi A, Davis S, Li L, Ahmed A, Giri S, et al. Activation of AMPK inhibits inflammation in MRL/lpr mouse mesangial cells. Clin Exp Immunol. 2009;156:542–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Li XN, Song J, Zhang L, LeMaire SA, Hou X, Zhang C, et al. Activation of the AMPK-FOXO3 pathway reduces fatty acid-induced increase in intracellular reactive oxygen species by upregulating thioredoxin. Diabetes. 2009;58:2246–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Cordain L. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr. 2005;81:341–54.

    CAS  PubMed  Google Scholar 

  73. Zhang H-Y, Chen L-L, Li X-J, Zhang J. Evolutionary inspirations for drug discovery. Trends Pharmacol Sci. 2010;31:443–8.

    Article  CAS  PubMed  Google Scholar 

  74. Zahorik DM. Associative and non-associative factors in learned food preferences. In: Barker LM, Best MR, Domjan M, editors. Learning mechanisms in food selection. Waco: Baylor University Press; 1977.

    Google Scholar 

  75. Zahorik DM, Maier SF, Pies RW. Preferences for tastes paired with recovery from thiamine deficiency in rats: appetitive conditioning or learned safety. J Comp Physiol Psychology. 1974;87:1083–91.

    Article  CAS  Google Scholar 

  76. Revusky S. The concurrent interference approach to delay learning. In: Barker LM, Best MR, Domjan M, editors. Learning mechanisms in food selection. Waco: Baylor University Press; 1977.

Download references

Acknowledgments

This work was partly supported by Govt. of India, Department of Science and Technology—Inspire Fellowship awarded to GM and Manipal University, Dr. T.M.A Pai Endowment Chair in Cognition awarded to MKU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Unnikrishnan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, G., Unnikrishnan, M.K. Multi-target drugs to address multiple checkpoints in complex inflammatory pathologies: evolutionary cues for novel “first-in-class” anti-inflammatory drug candidates: a reviewer’s perspective. Inflamm. Res. 64, 747–752 (2015). https://doi.org/10.1007/s00011-015-0851-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-015-0851-8

Keywords

Navigation