Skip to main content

Advertisement

Log in

Methotrexate induced apoptotic and necrotic chromatin changes in rat myeloid leukemia cells

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

It was tested as to why low-dose methotrexate (MTX) effective against rheumatoid arthritis poses considerable health risk at higher doses.

Methods

The tumorigenic potential of My1/De blast cells was followed by cytology and by the kinetics of 18FDG uptake. The toxicity of MTX on chromatin condensation was compared to predictive normal intermediates of chromosome condensation in control cells.

Results

MTX below 0.1 µg/ml did not cause visible changes in interphase chromatin structure. At its lowest toxic concentration (0.1 µg/ml) chromatin margination was confined to the outer edge of the nucleus. Between 0.1 and 5 µg/ml concentrations apoptotic chromatin shrinkage correlated with the dose of MTX. Apoptosis was exerted in early S phase excluding the mitotic effect. At higher MTX concentrations (>10 µg/ml) necrotic disruption and expansion took place. The lowest necrotic concentration (10 µg/ml) was close to highest apoptotic MTX concentration (5 µg/ml).

Conclusions

The switch from apoptosis to inflammatory necrosis taking place within a narrow concentration range supports the notion of a narrow therapeutic spectrum. Chromatin changes are early markers of genotoxicity at much lower concentrations than citogenetic changes in properly chosen sensitive cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pelz L, Götz J, Krüger G, Witt G. Increased methotrexate-induced chromosome breakage in patients with free trisomy 21 and their parents. Hum Genet. 1988;81:38–40.

    Article  CAS  PubMed  Google Scholar 

  2. Melnyk J, Duffy DM, Sparkes RS. Human mitotic and meiotic chromosome damage following in vivo exposure to methotrexate. Clin Genet. 1971;2:28–31.

    Article  CAS  PubMed  Google Scholar 

  3. Whitehead VM, Vuchich MJ, Cooley L, Lauer SJ, Mahoney DH, Shuster JJ, Payment C, Bernstein ML, Akabutu JJ, Bowen T, Kamen BA, Watson MS, Look AT, Pullen D, Camitta B. Translocations involving chromosome 12p11-13, methotrexate metabolism, and outcome in childhood B-progenitor cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. Clin Cancer Res. 1998;4:183–8.

    CAS  PubMed  Google Scholar 

  4. Genestier L, Paillot R, Fournel S, Ferraro C, Miossec P, Revillard JP. Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells. J Clin Invest. 1998;102:322–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Nakazawa F, Matsuno H, Yudoh K, Katayama R, Sawai T, Uzuki M, Kimura T. Methotrexate inhibits rheumatoid synovitis by inducing apoptosis. J Rheumatol. 2001;28:1800–8.

    CAS  PubMed  Google Scholar 

  6. Zintzaras E, Dahabreh IJ, Giannouli S, Voulgarelis M, Moutsopoulos HM. Infliximab and methotrexate in the treatment of rheumatoid arthritis: a systematic review and meta-analysis of dosage regimens. Clin Ther. 2008;30:1939–55.

    Article  CAS  PubMed  Google Scholar 

  7. Huang C, Hsu P, Hung Y, Liao Y, Liu C, Hour C, Kao M, Tsay GJ, Hung H, Liu GY. Ornithine decarboxylase prevents methotrexate-induced apoptosis by reducing intracellular reactive oxygen species production. Apoptosis. 2005;10:895–907.

    Article  CAS  Google Scholar 

  8. Erba E, Sen S, Lorico A, D’Incalci M. Potentiation of etoposide cytotoxicity against a human ovarian cancer cell line by pretreatment with non-toxic concentrations of methotrexate or aphidicolin. Eur J Cancer. 1992;28:66–71.

    Article  CAS  PubMed  Google Scholar 

  9. Erba E, Sen S. Synchronization of cancer cell lines with methotreaxate in vitro. Methods Cell Sci. 1996;18:149–63.

    Article  Google Scholar 

  10. Camargo M, Cervenka J. Pattern of chromosomal replication in synchronized lymphocytes. I. Evaluation and application of methotrexate block. Hum Genet. 1980;54:47–53.

    Article  CAS  PubMed  Google Scholar 

  11. Lampkin BC, Nagao T, Mauer AM. Synchronization and recruitment in acute leukemia. J Clin Invest. 1971;50:2204–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Fox MH, Read RA, Beford JS. Comparison of synchronized Chinese hamster ovary cells obtained by mitotic shake-off, hydroxyurea, aphidicolin, or methotrexate. Cytometry. 1987;8:315–20.

    Article  CAS  PubMed  Google Scholar 

  13. Khan SN, Yennamalli R, Subbarao N, Khan AU. Mitoxantrone induced impediment of histone acetylation and structural fl exibility of the protein. Cell Biochem Biophys. 2011;60:209–18.

    Article  CAS  PubMed  Google Scholar 

  14. Peter A. Submicroscopic changes in leukaemia cells of the cerebrospinal fluid following intrathecal methotrexate. Acta Neuropathol. 1974;29:345–54.

    Article  CAS  PubMed  Google Scholar 

  15. Heenen M, Laporte M, Noel JC, de Graef C. Methotrexate induces apoptotic cell death in human keratinocytes. Arch Dermatol Res. 1998;290:240–5.

    Article  CAS  PubMed  Google Scholar 

  16. Huggins CB, Yang NC. Induction and extinction of mammary cancer. Science. 1962;137:257–62.

    Article  CAS  PubMed  Google Scholar 

  17. Kozma L, Kis A, Ember I, Kertai P. Studies on acute myelomonocytic leukemia in LBF1 rats. Cancer Lett. 1993;68:185–92.

    Article  CAS  PubMed  Google Scholar 

  18. Huggins CB, Grand L, Oka H. Hundred day leukemia: preferential induction in rat by pulse doses of 7,8,12-trimethylbenz[a]anthracene. J Exp Med. 1970;131:321–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Huggins CB, Sugiyama T. Induction of leukemia in rat by pulse doses of 7,12-dimethylbenz[a]anthracene. Proc Natl Acad Sci USA. 1996;55:74–81.

    Article  Google Scholar 

  20. Offer H, Zurer I, Banfalvi G, Rehak M, Falcovitz A, Milyavsky M, Goldfinger N, Rotter V. p53 modulates base excision activity in a cell cycle-specific manner after genotoxic stress. Cancer Res. 2001;61:88–96.

    CAS  PubMed  Google Scholar 

  21. Banfalvi G. Apoptotic chromatin changes. Dordrecht: Springer Science and Business Media B.V.; (2009). pp. 125–202.

  22. Banfalvi G, Sooki-Toth A, Sarkar N, Csuzi S, Antoni F. Nascent DNA chains synthesized in recersibly permeable cells of mouse thymocytes. Eur J Biochem. 1984;139:553–9.

    Article  CAS  PubMed  Google Scholar 

  23. Gao FM, Li XL, Huang HW, Wang WH. In vitro studies of the cell cycle of mouse myelomonocytic leukemia using a fluorescence activated cell sorter and autoradiography. Zhonghua Zhong Liu Za Zhi. 1987;9:10–3.

    CAS  PubMed  Google Scholar 

  24. Banfalvi G, Nagy G, Gacsi M, Roszer T, Basnakian AG. Common pathway of chromosome condensation in mammalian cells. DNA Cell Biol. 2006;25:295–301.

    Article  CAS  PubMed  Google Scholar 

  25. Trencsenyi G, Nagy G, Bako F, Kertai P, Banfalvi G. Incomplete chromatin condensation in enlarged rat myelocytic leukemia cells. DNA Cell Biol. 2012;31:470–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Rahiem Ahmed YAA, Hasan Y. Prevention and management of high-dose methotrexate toxicity. J Cancer Sci Ther. 2013;5:106–112.

  27. Chen Z, Tu S, Hu Y, Wang Y, Xia Y, Jiang Y. Prediction of response of collagen-induced arthritis rats to methotrexate: an (1)H-NMR-based urine metabolomic analysis. J Huazhong Univ Sci Technol Med Sci. 2012;32:438–43.

    Article  CAS  PubMed  Google Scholar 

  28. Delano DL, Montesinos MC, Desai A, Wilder T, Fernandez P, D’Eustachio P, Wiltshire T, Cronstein BN. Genetically based resistance to the antiinflammatory effects of methotrexate in the air-pouch model of acute inflammation. Arthritis Rheum. 2005;52:2567–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Perazella MA, Moeckel GW. Nephrotoxicity from chemotherapeutic agents: clinical manifestations, pathobiology, and prevention/therapy. Semin Nephrol. 2010;30:570–81.

    Article  CAS  PubMed  Google Scholar 

  30. Miyachi H, Takemura Y, Kobayashi H, Ando Y. Cytotoxicity of trimetrexate against antifolate-resistant human T-cell leukemia cell lines developed in oxidized or reduced folate. Jpn J Cancer Res. 1997;88:900–6.

    Article  CAS  PubMed  Google Scholar 

  31. Shane B. Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism. Vitam Horm. 1989;45:263–335.

    Article  CAS  PubMed  Google Scholar 

  32. Banfalvi G. Apoptotic agents inducing genotoxicity-specific chromatin changes. Apoptosis. 2014;19:1301–16.

    Article  CAS  PubMed  Google Scholar 

  33. Ryan TJ, Boddington MM, Spriggs AI. Chromosomal abnormalities produced by folic acid antagonists. Br J Derm. 1965;77:541–55.

    Article  CAS  Google Scholar 

  34. Lorico A, Toffoli G, Boiocchi M, Erba E, Broggini M, Rappa G, D’Incalci M. Accumulation of DNA strand breaks in cells exposed to methotrexate or N10-propargyl-5,8-dideazafolic acid. Cancer Res. 1988;48:2036–41.

    CAS  PubMed  Google Scholar 

  35. Morgan SL, Baggott JE, Bernreuter WK, Gay RE, Arani R, Alarcón GS. MTX affects inflammation and tissue destruction differently in the rat AA model. J Rheumatol. 2011;28:1476–81.

    Google Scholar 

  36. Li JC, Kaminskas E. Accumulation of DNA strand breaks and methotrexate cytotoxicity. Proc Nat Acad Sci USA. 1984;81:5694–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Walker PR, Smith C, Youdale T, Leblanc J, Whitfield JF, Sikorska M. Topoisomerase II-reactive chemotherapeutic drugs induce apoptosis inthymocytes. Cancer Res. 1991;51:1078–85.

    CAS  PubMed  Google Scholar 

  38. Walker PR, Leblanc J, Carson C, Ribecco M, Sikorska M. Neither caspase-3 nor DNA fragmentation factor is required for high molecular weight DNA degradation in apoptosis. Ann NY Acad Sci. 1999;887:48–59.

    Article  CAS  PubMed  Google Scholar 

  39. Herman S, Zurgil N, Deutsch M. Low dose methotrexate induces apoptosis with reactive oxygen species involvement in T lymphocytic cell lines to a greater extent than in monocytic lines. Inflamm Res. 2005;54:273–80.

    Article  CAS  PubMed  Google Scholar 

  40. Gómez-Reino JJ, Carmona L, Valverde VR, Mola EM, Montero MD. Treatment of rheumatoid arthritis with tumor necrosis factor inhibitors may predispose to significant increase in tuberculosis risk: a multicenter active-surveillance report. Arthritis Rheum. 2003;48:2122–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Hungarian Scientific Research Fund (OTKA grant) T42762 grant to G.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaspar Banfalvi.

Additional information

Responsible Editor: Liwu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trencsenyi, G., Bako, F., Nagy, G. et al. Methotrexate induced apoptotic and necrotic chromatin changes in rat myeloid leukemia cells. Inflamm. Res. 64, 193–203 (2015). https://doi.org/10.1007/s00011-015-0797-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-015-0797-x

Keywords

Navigation