Skip to main content
Log in

LPS preconditioning ameliorates intestinal injury in a rat model of hemorrhagic shock

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

Previous studies indicate that endotoxin preconditioning may decrease the inflammatory response and alleviate intestinal mucosal damage caused by sepsis. However, it is not known whether preconditioning with endotoxin might protect the intestinal mucosa after hemorrhagic shock. In this study, we investigated the effect of lipopolysaccharide (LPS) preconditioning on the intestinal mucosa following hemorrhagic shock in a rat model. Given that intestinal toll-like receptor 4 (TLR4) signaling is exaggerated in response to LPS, we further investigated the role of TLR4 signaling in endotoxin tolerance.

Methods

Animals were pre-treated with intra-peritoneal Escherichia coli LPS for 5 days prior to hemorrhagic shock. Animals were bled to achieve a mean arterial pressure (MAP) of 35–40 mmHg, then resuscitated with Ringer solution and the heparinized shed blood to maintain MAP between 90 and 100 mmHg. The distal ileum was harvested after resuscitation and graded for mucosal damage. TNF-α, TLR4, cleaved caspase-3, and intestinal trefoil factor 3 (TFF3) levels were measured at different time points.

Results

Pretreatment with LPS significantly reduced intestinal mucosal damage and protein levels of cleaved caspase-3. Furthermore, animals pre-treated with LPS experienced reduction of TNF-α and increased mucosal expression of TFF3. LPS tolerance was associated with reduced TLR4 expression.

Conclusions

Endotoxin preconditioning can lessen the effects of ischemia and reperfusion injury in intestinal mucosa of a rat model with hemorrhagic shock. It is hypothesized that this effect is mediated via inhibition of TLR4 over-expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Souza DG, Bertini R, Vieira AT, Cunha FQ, Poole S, Allegretti M, et al. Repertaxin, a novel inhibitor of rat CXCR2 function, inhibits inflammatory responses that follow intestinal ischaemia and reperfusion injury. Br J Pharmacol. 2004;143:132–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Eror AT, Stojadinovic A, Starnes BW, Makrides SC, Tsokos GC, Shea-Donohue T. Antiinflammatory effects of soluble complement receptor type 1 promote rapid recovery of ischemia/reperfusion injury in rat small intestine. Clin Immunol. 1999;90:266–75.

    Article  CAS  PubMed  Google Scholar 

  3. Proctor LM, Arumugam TV, Shiels I, Reid RC, Fairlie DP, Taylor SM. Comparative anti-inflammatory activities of antagonists to C3a and C5a receptors in a rat model of intestinal ischaemia/reperfusion injury. Br J Pharmacol. 2004;142:756–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hsieh YH, McCartney K, Moore TA, Thundyil J, Gelderblom M, Manzanero S, et al. Intestinal ischemia-reperfusion injury leads to inflammatory changes in the brain. Shock. 2011;36:424–30.

    Article  CAS  PubMed  Google Scholar 

  5. Sansonetti PJ. The innate signaling of dangers and the dangers of innate signaling. Nat Immunol. 2006;7:1237–42.

    Article  CAS  PubMed  Google Scholar 

  6. Meylan E, Tschopp J, Karin M. Intracellular pattern recognition receptors in the host response. Nature. 2006;442:39–44.

    Article  CAS  PubMed  Google Scholar 

  7. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.

    Article  CAS  PubMed  Google Scholar 

  8. Chang JX, Chen S, Ma LP, Jiang LY, Chen JW, Chang RM, et al. Functional and morphological changes of the gut barrier during the restitution process after hemorrhagic shock. World J Gastroenterol. 2005;11:5485–91.

    PubMed  Google Scholar 

  9. Nomura F, Akashi S, Sakao Y, Sato S, Kawai T, Matsumoto M, et al. Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression. J Immunol. 2000;164:3476–9.

    Article  CAS  PubMed  Google Scholar 

  10. Broad A, Jones DE, Kirby JA. Toll-like receptor (TLR) response tolerance: a key physiological “damage limitation” effect and an important potential opportunity for therapy. Curr Med Chem. 2006;13:2487–502.

    Article  CAS  PubMed  Google Scholar 

  11. Johnson BJ, Le TT, Dobbin CA, Banovic T, Howard CB, Flores FM, et al. Heat shock protein 10 inhibits lipopolysaccharide-induced inflammatory mediator production. J Biol Chem. 2005;280:4037–47.

    Article  CAS  PubMed  Google Scholar 

  12. Ogawa H, Rafiee P, Heidemann J, Fisher PJ, Johnson NA, Otterson MF, et al. Mechanisms of endotoxin tolerance in human intestinal microvascular endothelial cells. J Immunol. 2003;170:5956–64.

    Article  CAS  PubMed  Google Scholar 

  13. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118:229–41.

    Article  CAS  PubMed  Google Scholar 

  14. Nemazee D, Gavin A, Hoebe K, Beutler B. Immunology: toll-like receptors and antibody responses. Nature. 2006;441:E4 (discussion E4).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Michelsen KS, Arditi M. Toll-like receptors and innate immunity in gut homeostasis and pathology. Curr Opin Hematol. 2007;14:48–54.

    Article  CAS  PubMed  Google Scholar 

  16. Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, Podolsky DK. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol. 2000;164:966–72.

    Article  CAS  PubMed  Google Scholar 

  17. Fukata M, Michelsen KS, Eri R, Thomas LS, Hu B, Lukasek K, et al. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am J Physiol Gastrointest Liver Physiol. 2005;288:G1055–65.

    Article  CAS  PubMed  Google Scholar 

  18. Strieter RM, Kunkel SL, Bone RC. Role of tumor necrosis factor-alpha in disease states and inflammation. Crit Care Med. 1993;21:S447–63.

    Article  CAS  PubMed  Google Scholar 

  19. Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99–104.

    Article  CAS  PubMed  Google Scholar 

  20. Barrera GJ, Sanchez G, Gonzalez JE. Trefoil factor 3 isolated from human breast milk downregulates cytokines (IL8 and IL6) and promotes human beta defensin (hBD2 and hBD4) expression in intestinal epithelial cells HT-29. Bosn J Basic Med Sci. 2012;12:256–64.

    CAS  PubMed  Google Scholar 

  21. Science TMo, China TotPsRo. Guidance suggestions for the care and use of laboratory animals: MSTPRC Beijing, 2006-9-30.

  22. Endo Y, Shibazaki M, Yamaguchi K, Kai K, Sugawara S, Takada H, et al. Enhancement by galactosamine of lipopolysaccharide(LPS)-induced tumour necrosis factor production and lethality: its suppression by LPS pretreatment. Br J Pharmacol. 1999;128:5–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ypsilantis P, Lambropoulou M, Tentes I, Kortsaris A, Papadopoulos N, Simopoulos C. Mesna protects intestinal mucosa from ischemia/reperfusion injury. J Surg Res. 2006;134:278–84.

    Article  CAS  PubMed  Google Scholar 

  24. Zhai Z, Gomez-Mejiba SE, Gimenez MS, Deterding LJ, Tomer KB, Mason RP, et al. Free radical-operated proteotoxic stress in macrophages primed with lipopolysaccharide. Free Radic Biol Med. 2012;53:172–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Murphey ED, Fang G, Varma TK, Sherwood ER. Improved bacterial clearance and decreased mortality can be induced by LPS tolerance and is not dependent upon IFN-gamma. Shock. 2007;27:289–95.

    Article  CAS  PubMed  Google Scholar 

  26. West MA, Heagy W. Endotoxin tolerance: a review. Crit Care Med. 2002;30:S64–73.

    Article  CAS  Google Scholar 

  27. Granowitz EV, Porat R, Mier JW, Orencole SF, Kaplanski G, Lynch EA, et al. Intravenous endotoxin suppresses the cytokine response of peripheral blood mononuclear cells of healthy humans. J Immunol. 1993;151:1637–45.

    CAS  PubMed  Google Scholar 

  28. Echtenacher B, Mannel DN. Requirement of TNF and TNF receptor type 2 for LPS-induced protection from lethal septic peritonitis. J Endotoxin Res. 2002;8:365–9.

    Article  CAS  PubMed  Google Scholar 

  29. Schwarz NT, Engel B, Eskandari MK, Kalff JC, Grandis JR, Bauer AJ. Lipopolysaccharide preconditioning and cross-tolerance: the induction of protective mechanisms for rat intestinal ileus. Gastroenterology. 2002;123:586–98.

    Article  CAS  PubMed  Google Scholar 

  30. Tasaki K, Ruetzler CA, Ohtsuki T, Martin D, Nawashiro H, Hallenbeck JM. Lipopolysaccharide pre-treatment induces resistance against subsequent focal cerebral ischemic damage in spontaneously hypertensive rats. Brain Res. 1997;748:267–70.

    Article  CAS  PubMed  Google Scholar 

  31. Wong WM, Poulsom R, Wright NA. Trefoil peptides. Gut. 1999;44:890–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Rupani B, Caputo FJ, Watkins AC, Vega D, Magnotti LJ, Lu Q, et al. Relationship between disruption of the unstirred mucus layer and intestinal restitution in loss of gut barrier function after trauma hemorrhagic shock. Surgery. 2007;141:481–9.

    Article  PubMed  Google Scholar 

  33. Leaphart CL, Cavallo J, Gribar SC, Cetin S, Li J, Branca MF, et al. A critical role for TLR4 in the pathogenesis of necrotizing enterocolitis by modulating intestinal injury and repair. J Immunol. 2007;179:4808–20.

    Article  CAS  PubMed  Google Scholar 

  34. Watanabe T, Higuchi K, Kobata A, Nishio H, Tanigawa T, Shiba M, et al. Non-steroidal anti-inflammatory drug-induced small intestinal damage is Toll-like receptor 4 dependent. Gut. 2008;57:181–7.

    Article  CAS  PubMed  Google Scholar 

  35. Wang J, Ouyang Y, Guner Y, Ford HR, Grishin AV. Ubiquitin-editing enzyme A20 promotes tolerance to lipopolysaccharide in enterocytes. J Immunol. 2009;183:1384–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Cario E, Brown D, McKee M, Lynch-Devaney K, Gerken G, Podolsky DK. Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am J Pathol. 2002;160:165–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Furrie E, Macfarlane S, Thomson G, Macfarlane GT. Toll-like receptors-2, -3 and -4 expression patterns on human colon and their regulation by mucosal-associated bacteria. Immunology. 2005;115:565–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The project was supported by National Natural Science Foundation of China (81071761) and Guangdong National Natural Science Foundation (10151008901000135).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxing Chang.

Additional information

Responsible Editor: John Di Battista.

R. Chang and Y. Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, R., Wang, Y., Chang, J. et al. LPS preconditioning ameliorates intestinal injury in a rat model of hemorrhagic shock. Inflamm. Res. 63, 675–682 (2014). https://doi.org/10.1007/s00011-014-0740-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-014-0740-6

Keywords

Navigation