Skip to main content

Advertisement

Log in

Direct comparison of laser Doppler flowmetry and laser Doppler imaging for assessment of experimentally-induced inflammation in human skin

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

Laser Doppler imaging (LDI) and laser Doppler flowmetry (LDF) can measure localized skin perfusion. The purpose of the study was to directly compare LDF with LDI as a tool for measuring skin blood changes in an experimental model of chemically-induced skin inflammation.

Methods

Regions of interest 1.8 cm2 in area on the forearm skin of eight healthy volunteers were randomized and exposed to 0.25, 0.5, 1, or 2 % topical sodium lauryl sulfate (SLS) or vehicle for 24 h. Mean blood flow was measured by LDI and LDF at 24, 48, and 72 h. Inflammation was clinically graded using a standardized, clinical score.

Results

Sodium lauryl sulfate induced significant, dose-dependent local inflammation. Both Doppler methods were significantly correlated with the clinical grading (LDF, r = 0.755; LDI, r = 0.836). LDF and LDI showed similar significance differences with regard to dose- and time-response patterns compared to the vehicle. The absolute and relative LDF and LDI values were significantly correlated.

Conclusions

Laser Doppler flowmetry and LDI showed similar dose- and time-response relations in irritant-induced inflammatory skin reactions. For the assessment of localized skin reactions, LDI possesses no apparent advantages over the less expensive LDF method for grading dermal inflammatory reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Engelhart M, Petersen LJ, Kristensen JK. The local regulation of blood flow evaluated simultaneously by 133-xenon washout and laser Doppler flowmetry. J Invest Dermatol. 1988;91:451–3.

    Article  PubMed  CAS  Google Scholar 

  2. Cracowski JL, Minson CT, Salvat-Melis M, Halliwill JR. Methodological issues in the assessment of skin microvascular endothelial function in humans. Trends Pharmacol Sci. 2006;27:503–8.

    Article  PubMed  CAS  Google Scholar 

  3. Roustit M, Blaise S, Millet C, Cracowski JL. Reproducibility and methodological issues of skin post-occlusive and thermal hyperemia assessed by single-point laser Doppler flowmetry. Microvasc Res. 2010;79:102–8.

    Article  PubMed  CAS  Google Scholar 

  4. Tew GA, Klonizakis M, Crank H, Briers JD, Hodges GJ. Comparison of laser speckle contrast imaging with laser Doppler for assessing microvascular function. Microvasc Res. 2011;82:326–32.

    Article  PubMed  Google Scholar 

  5. Clough GF, Bennett AR, Church MK. Effects of H1 antagonists on the cutaneous vascular response to histamine and bradykinin: a study using scanning laser Doppler imaging. Br J Dermatol. 1998;138:806–14.

    Article  PubMed  CAS  Google Scholar 

  6. Bray R, Forrester K, Leonard C, McArthur R, Tulip J, Lindsay R. Laser Doppler imaging of burn scars: a comparison of wavelength and scanning methods. Burns. 2003;29:199–206.

    Article  PubMed  Google Scholar 

  7. Opazo Saez AM, Mosel F, Nurnberger J, Rushentsova U, Gossl M, Mitchell A, Schafers RF, Philipp T, Wenzel RR. Laser Doppler imager (LDI) scanner and intradermal injection for in vivo pharmacology in human skin microcirculation: responses to acetylcholine, endothelin-1 and their repeatability. Br J Clin Pharmacol. 2005;59:511–9.

    Article  PubMed  Google Scholar 

  8. Fluhr JW, Kuss O, Diepgen T, Lazzerini S, Pelosi A, Gloor M, Berardesca E. Testing for irritation with a multifactorial approach: comparison of eight non-invasive measuring techniques on five different irritation types. Br J Dermatol. 2001;145:696–703.

    Article  PubMed  CAS  Google Scholar 

  9. Kernick DP, Shore AC. Characteristics of laser Doppler perfusion imaging in vitro and in vivo. Physiol Meas. 2000;21:333–40.

    Article  PubMed  CAS  Google Scholar 

  10. Klonizakis M, Manning G, Donnelly R. Assessment of lower limb microcirculation: exploring the reproducibility and clinical application of laser Doppler techniques. Skin Pharmacol Physiol. 2011;24:136–43.

    Article  PubMed  CAS  Google Scholar 

  11. Roustit M, Millet C, Blaise S, Dufournet B, Cracowski JL. Excellent reproducibility of laser speckle contrast imaging to assess skin microvascular reactivity. Microvasc Res. 2010;80:505–11.

    Article  PubMed  CAS  Google Scholar 

  12. Seifalian AM, Stansby G, Jackson A, Howell K, Hamilton G. Comparison of laser Doppler perfusion imaging, laser Doppler flowmetry, and thermographic imaging for assessment of blood flow in human skin. Eur J Vasc Surg. 1994;8:65–9.

    Article  PubMed  CAS  Google Scholar 

  13. Broby-Johansen U, Karlsmark T, Petersen LJ, Serup J. Ranking of the antipsoriatic effect of various topical corticosteroids applied under a hydrocolloid dressing—skin-thickness, blood-flow and colour measurements compared to clinical assessments. Clin Exp Dermatol. 1990;15:343–8.

    Article  PubMed  CAS  Google Scholar 

  14. Henricson J, Tesselaar E, Persson K, Nilsson G, Sjoberg F. Assessment of microvascular function by study of the dose-response effects of iontophoretically applied drugs (acetylcholine and sodium nitroprusside)—methods and comparison with in vitro studies. Microvasc Res. 2007;73:143–9.

    Article  PubMed  CAS  Google Scholar 

  15. Leahy MJ, Enfield JG, Clancy NT, O’Doherty J, McNamara P, Nilsson GE. Biophotonic methods in microcirculation imaging. Med Laser Appl. 2007;22:105–26.

    Article  Google Scholar 

  16. Tupker RA, Willis C, Berardesca E, Lee CH, Fartasch M, Agner T, Serup J. Guidelines on sodium lauryl sulfate (SLS) exposure tests: a report from the Standardization Group of the European Society of Contact Dermatitis. Contact Dermat. 1997;37:53–69.

    Article  CAS  Google Scholar 

  17. Petersen LJ, Lyngholm AM, Arendt-Nielsen L. A novel model of inflammatory pain in human skin involving topical application of sodium lauryl sulfate. Inflamm Res. 2010;59:775–81.

    Article  PubMed  CAS  Google Scholar 

  18. Fullerton A, Stucker M, Wilhelm KP, Wardell K, Anderson C, Fischer T, Nilsson GE, Serup J. Guidelines for visualization of cutaneous blood flow by laser Doppler perfusion imaging: a report from the Standardization Group of the European Society of Contact Dermatitis based upon the HIRELADO European community project. Contact Dermat. 2002;46:129–40.

    Article  CAS  Google Scholar 

  19. Petersen LJ, Church MK, Skov PS. Histamine is released in the wheal but not the flare following challenge of human skin in vivo: a microdialysis study. Clin Exp Allergy. 1997;27:284–95.

    Article  PubMed  CAS  Google Scholar 

  20. Petersen LJ, Zacho HD, Lyngholm AM, Arendt-Nielsen L. Tissue viability imaging for assessment of pharmacologically induced vasodilation and vasoconstriction in human skin. Microvasc Res. 2010;80:499–504.

    Article  PubMed  CAS  Google Scholar 

  21. O’Doherty J, McNamara P, Clancy NT, Enfield JG, Leahy MJ. Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration. J Biomed Opt. 2009;14:034025.

    Article  PubMed  Google Scholar 

  22. Staberg B, Serup J. Allergic and irritant skin reactions evaluated by laser Doppler flowmetry. Contact Dermat. 1988;18:40–5.

    Article  CAS  Google Scholar 

  23. Goon AT, Leow YH, Chan YH, Goh CL. Correlation between laser Doppler perfusion imaging and visual scoring of patch test sites in subjects with experimentally induced allergic and irritant contact reactions. Skin Res Technol. 2004;10:64–6.

    Article  PubMed  Google Scholar 

  24. Fullerton A, Rode B, Serup J. Skin irritation typing and grading based on laser Doppler perfusion imaging. Skin Res Technol. 2002;8:23–31.

    Article  PubMed  Google Scholar 

  25. Farnebo S, Zettersten EK, Samuelsson A, Tesselaar E, Sjoberg F. Assessment of blood flow changes in human skin by microdialysis urea clearance. Microcirculation. 2011;18:198–204.

    Article  PubMed  CAS  Google Scholar 

  26. Roustit M, Maggi F, Isnard S, Hellmann M, Bakken B, Cracowski JL. Reproducibility of a local cooling test to assess microvascular function in human skin. Microvasc Res. 2010;79:34–9.

    Article  PubMed  CAS  Google Scholar 

  27. Bircher A, de Boer EM, Agner T, Wahlberg JE, Serup J. Guidelines for measurement of cutaneous blood flow by laser Doppler flowmetry: a report from the Standardization Group of the European Society of Contact Dermatitis. Contact Dermat. 1994;30:65–72.

    Article  CAS  Google Scholar 

  28. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8:135–60.

    Article  PubMed  CAS  Google Scholar 

  29. Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30:1–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by a research grant from the Rosa and Asta Jensen Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars J. Petersen.

Additional information

Responsible Editor: Michael J. Parnham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersen, L.J. Direct comparison of laser Doppler flowmetry and laser Doppler imaging for assessment of experimentally-induced inflammation in human skin. Inflamm. Res. 62, 1073–1078 (2013). https://doi.org/10.1007/s00011-013-0668-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-013-0668-2

Keywords

Navigation