Skip to main content
Log in

Effect of chlorogenic acid on LPS-induced proinflammatory signaling in hepatic stellate cells

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

This study was aimed at investigating the effect of chlorogenic acid (CGA) on lipopolysaccharide (LPS)-induced proinflammatory signaling in hepatic stellate cells (HSCs).

Methods

An immortalized rat HSC line was cultured in vitro and treated with LPS in the absence or presence of CGA. Reactive oxygen species (ROS) production in the HSCs was monitored by flow cytometer using DCFH-DA. The protein expression levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear factor-κB (NF-κB), and p-IκB-α were determined by Western blot. The mRNA expression levels of TLR4, MyD88, monocyte chemotactic protein 1(MCP-1), and interleukin 6 (IL-6) were detected by RT-PCR. The levels of MCP-1 and IL-6 in the culture supernatant of HSCs were measured by ELISA.

Results

CGA had no effect on expression of TLR4 and MyD88. However, the treatment of CGA can inhibit LPS-induced production of ROS in HSCs. Meanwhile, CGA can inhibit LPS-induced nuclear translocation of NF-κB and IκB-α phosphorylation in HSCs, as well as NAC (a ROS scavenger). The mRNA expression and the levels of MCP-1 and IL-6 in the culture supernatant of the HSCs in this study were elevated by LPS stimulation and inhibited by CGA treatment, as well as NAC and PDTC (a NF-κB inhibitor).

Conclusion

Our results indicate that CGA can efficiently inhibit LPS-induced proinflammatory responses in HSCs and the anti-inflammatory effect may be due to the inhibition of LPS/ROS/NF-κB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CGA:

Chlorogenic acid

LPS:

Lipopolysaccharides

HSCs:

Hepatic stellate cells

TLR4:

Toll-like receptor 4

ROS:

Reactive oxygen species

NAC:

N-Acetylcysteine

PDTC:

Pyrrolidine dithiocarbamate

References

  1. Bataller R, Brenner DA. Liver fibrosis. J Clin Investig. 2005;115:209–18.

    PubMed  CAS  Google Scholar 

  2. Friedman SL. Evolving challenges in hepatic fibrosis. Nat Rev Gastroenterol and Hepatol. 2010;7:425–36.

    Article  Google Scholar 

  3. Fallowfield JA. Therapeutic targets in liver fibrosis. Am J Physiol-Gastrointest Liver Physiol. 2011;300:G709–15.

    Article  PubMed  CAS  Google Scholar 

  4. Kawada N. Evolution of hepatic fibrosis research. Hepatol Res. 2011;41:199–208.

    Article  PubMed  CAS  Google Scholar 

  5. Saile B, Ramadori G. Inflammation, damage repair and liver fibrosis—role of cytokines and different cell types. Z Gastroent. 2007;45:77–86.

    Article  CAS  Google Scholar 

  6. Pinzani M, Macias-Barragan J. Update on the pathophysiology of liver fibrosis. Expert Rev Gastroenterol Hepatol. 2010;4:459–72.

    Article  PubMed  Google Scholar 

  7. O’Neill LA. Therapeutic targeting of Toll-like receptors for inflammatory and infectious diseases. Curr Opin Pharmacol. 2003;3:396–403.

    Article  PubMed  Google Scholar 

  8. Zhu JK, Mohan C. Toll-like receptor signaling pathways-therapeutic opportunities. Mediat Inflamm. 2010. Art ID 781235.

  9. Aoyama T, Paik YH, Seki E. Toll-like receptor signaling and liver fibrosis. Gastroenterol Res Pract. 2010. Art ID 192543.

  10. Lin RS, Lee FY, Lee SD, Tsai YT, Lin HC, Lu RH, et al. Endotoxemia in patients with chronic liver-diseases—relationship to severity of liver diseases, presence of esophageal varices, and hyperdynamic circulation. J Hepatol. 1995;22:165–72.

    Article  PubMed  CAS  Google Scholar 

  11. Parlesak A, Schafer C, Schutz T, Bode JC, Bode C. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. J Hepatol. 2000;32:742–7.

    Article  PubMed  CAS  Google Scholar 

  12. Choi Y, Jeon WK, Hwang SJ, Kim BI, Sohn CI, Park DI, et al. The Role of the Gut Barrier Function in the Pathophysiology of Viral Liver Cirrhosis. Hepato-Gastroenterol. 2011;58:1244–7.

    Google Scholar 

  13. Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology. 2008;48:322–35.

    Article  PubMed  CAS  Google Scholar 

  14. Brun P, Castagliuolo I, Pinzani M, Palu G, Martines D. Exposure to bacterial cell wall products triggers an inflammatory phenotype in hepatic stellate cells. Am J Physiol-Gastroint Liver Physiol. 2005;289:G571–8.

    Article  CAS  Google Scholar 

  15. Paik YH, Schwabe RF, Bataller R, Russo MP, Jobin C, Brenner DA. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology. 2003;37:1043–55.

    Article  PubMed  CAS  Google Scholar 

  16. Thirunavukkarasu C, Watkins SC, Gandhi CR. Mechanisms of endotoxin-induced NO, IL-6, and TNF-alpha production in activated rat hepatic stellate cells: role of p38 MAPK. Hepatol. 2006;44:389–98.

    Article  CAS  Google Scholar 

  17. Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 2007;13:1324–32.

    Article  PubMed  CAS  Google Scholar 

  18. Feng RT, Lu YJ, Bowman LL, Qian Y, Castranova V, Ding M. Inhibition of activator protein-1, NF-kappa B, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. J Biol Chem. 2005;280:27888–95.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang X, Huang H, Yang TT, Ye Y, Shan JH, Yin ZM, et al. Chlorogenic acid protects mice against lipopolysaccharide-induced acute lung injury. Inj Int J Care Inj. 2010;41:746–52.

    Google Scholar 

  20. Kono Y, Kobayashi K, Tagawa S, Adachi K, Ueda A, Sawa Y, et al. Antioxidant activity of polyphenolics in diets Rate constants of reactions of chlorogenic acid and caffeic acid with reactive species of oxygen and nitrogen. Biochim Biophys Acta. 1997;1335:335–42.

    Article  PubMed  CAS  Google Scholar 

  21. Shi HY, Dong L, Bai YH, Zhao JH, Zhang Y, Zhang L. Chlorogenic acid against carbon tetrachloride-induced liver fibrosis in rats. Eur J Pharmacol. 2009;623:119–24.

    Article  PubMed  CAS  Google Scholar 

  22. Xu YX, Chen JW, Yu XA, Tao WW, Jiang FR, Yin ZM, et al. Protective effects of chlorogenic acid on acute hepatotoxicity induced by lipopolysaccharide in mice. Inflamm Res. 2010;59:871–7.

    Article  PubMed  CAS  Google Scholar 

  23. Shan JH, Fu J, Zhao ZH, Kong XQ, Huang H, Luo L, et al. Chlorogenic acid inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264.7 cells through suppressing NF-kappa B and JNK/AP-1 activation. Int Immunopharmacol. 2009;9:1042–8.

    Article  PubMed  CAS  Google Scholar 

  24. Wang BB, Cheng JY, Gao HH, Zhang Y, Chen ZN, Bian HJ. Hepatic stellate cells in inflammation-fibrosis-carcinoma axis. Anat Rec. 2010;293:1492–6.

    Article  Google Scholar 

  25. Vogel S, Piantedosi R, Frank J, Lalazar A, Rockey DC, Friedman SL, et al. An immortalized rat liver stellate cell line (HSC-T6): a new cell model for the study of retinoid metabolism in vitro. J Lipid Res. 2000;41:882–93.

    PubMed  CAS  Google Scholar 

  26. Lebel CP, Ischiropoulos H, Bondy SC. Evaluation of the probe 2′, 7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol. 1992;5:227–31.

    Article  PubMed  CAS  Google Scholar 

  27. Choi HK, Pokharel YR, Lim SC, Han HK, Ryu CS, Kim SK, et al. Inhibition of liver fibrosis by solubilized coenzyme Q10: Role of Nrf2 activation in inhibiting transforming growth factor-beta 1 expression. Toxicol Appl Pharmacol. 2009;240:377–84.

    Article  PubMed  CAS  Google Scholar 

  28. Gill R, Tsung A, Billiar T. Linking oxidative stress to inflammation: Toll-like receptors. Free Radical Biol Med. 2010;48:1121–32.

    Article  CAS  Google Scholar 

  29. Wu J, Meng ZJ, Jiang M, Zhang EJ, Trippler M, Broering R, et al. Toll-like receptor-induced innate immune responses in non-parenchymal liver cells are cell type-specific. Immunology. 2010;129:363–74.

    Article  PubMed  CAS  Google Scholar 

  30. Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42:145–51.

    Article  PubMed  CAS  Google Scholar 

  31. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature. 1997;388:548–54.

    Article  PubMed  CAS  Google Scholar 

  32. Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M. The I kappa B kinase complex (IKK) contains two kinase subunits, IKK alpha and IKK beta, necessary for I kappa B phosphorylation and NF-kappa B activation. Cell. 1997;91:243–52.

    Article  PubMed  CAS  Google Scholar 

  33. Marra F, DeFranco R, Grappone C, Milani S, Pastacaldi S, Pinzani M, et al. Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration. Am J Pathol. 1998;152:423–30.

    PubMed  CAS  Google Scholar 

  34. Wasmuth HE, Tacke F, Trautwein C. Chemokines in liver inflammation and fibrosis. Semin Liver Dis. 2010;30:215–25.

    Article  PubMed  CAS  Google Scholar 

  35. Seki E, De Minicis S, Inokuchi S, Taura K, Miyai K, Van Rooijen N, et al. CCR2 Promotes Hepatic Fibrosis in Mice. Hepatology. 2009;50:185–97.

    Article  PubMed  CAS  Google Scholar 

  36. Marra F, Romanelli RG, Giannini C, Failli P, Pastacaldi S, Arrighi MC, et al. Monocyte chemotactic protein-1 as a chemoattractant for human hepatic stellate cells. Hepatology. 1999;29:140–8.

    Article  PubMed  CAS  Google Scholar 

  37. Tsuruta S, Nakamuta M, Enjoji M, Kotoh K, Hiasa K, Egashira K, et al. Anti-monocyte chemoattractant protein-1 gene therapy prevents dimethylnitrosamine-induced hepatic fibrosis in rats. Int J Mol Med. 2004;14:837–42.

    PubMed  CAS  Google Scholar 

  38. Kayano K, Okita K. Does IL-6 regulate liver fibrosis/cirrhosis directly and indirectly? J Gastroenterol. 2000;35:250–1.

    Article  PubMed  CAS  Google Scholar 

  39. Choi I, Kang HS, Yang Y, Pyun KH. IL-6 induces hepatic inflammation and collagen-synthesis in vivo. Clin Exp Immunol. 1994;95:530–5.

    Article  PubMed  CAS  Google Scholar 

  40. Asehnoune K, Strassheim D, Mitra S, Kim JY, Abraham E. Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kappaB. J Immunol. 2004;172:2522–9.

    PubMed  CAS  Google Scholar 

  41. Park HS, Jung HY, Park EY, Kim J, Lee WJ, Bae YS. Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappaB. J Immunol. 2004;173:3589–93.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NO.81200310). The authors thank Hao Sun and Huaijie Wang for their language and writing assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Guo.

Additional information

Responsible Editor: Liwu Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, H., Dong, L., Dang, X. et al. Effect of chlorogenic acid on LPS-induced proinflammatory signaling in hepatic stellate cells. Inflamm. Res. 62, 581–587 (2013). https://doi.org/10.1007/s00011-013-0610-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-013-0610-7

Keywords

Navigation