Skip to main content

Advertisement

Log in

Hesperidin alleviates oxidative stress and downregulates the expressions of proliferative and inflammatory markers in azoxymethane-induced experimental colon carcinogenesis in mice

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Colon cancer is a common malignant neoplasm causing huge morbidity and mortality worldwide. Current therapeutic interventions are unsatisfying, which necessitates novel chemopreventive strategies. The present study was intended to elucidate the chemopreventive efficacy of hesperidin against azoxymethane (AOM)-induced mouse colon carcinogenesis.

Materials and methods

Swiss albino mice were subjected to intraperitoneal injections of AOM once a week for 3 consecutive weeks. Hesperidin treatments were provided in the initiation or post-initiation phases. The number and multiplicity of aberrant crypt foci (ACF), tumor incidence and antioxidant status were determined. Histopathological analyses, proliferating cell nuclear antigen (PCNA) index and modulations in the expression of inflammatory markers such as nuclear factor kappa B (NF-κB), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were studied.

Results

Hesperidin treatments significantly inhibited the number and multiplicities of AOM-induced ACF and tumor incidence. Hesperidin reduced oxidative stress parameters and enhanced antioxidant status. A marked decrease in the PCNA index was evident on hesperidin administration. Hesperidin treatments caused a prominent downregulation of NF-κB and its target molecules iNOS and COX-2, thereby combating inflammation.

Conclusion

This study proves the chemopreventive efficacy of hesperidin against the deleterious traits of colon carcinogenesis including accelerated proliferation, inflammation and persistent oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics 2011: the impact of eliminating socio economic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011;61:212–36.

    Article  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  3. Thompson PA, Gerner EW. Current concepts in colorectal cancer prevention. Expert Rev Gastroenterol Hepatol. 2009;3:369–82.

    Article  PubMed  Google Scholar 

  4. Wei EK, Giovannucci E, Wu K, Rosner B, Fuchs CS, Willett WC, Colditz GA. Comparison of risk factors for colon and rectal cancer. Int J Cancer. 2004;108:433–42.

    Article  PubMed  CAS  Google Scholar 

  5. Tapas AR, Sakarkar DM, Kakde RB. Flavonoids as nutraceuticals: a review. Trop J Pharm Res. 2008;7:1089–99.

    Article  Google Scholar 

  6. Birt DF, Hendrich S, Wang W. Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther. 2001;90:157–77.

    Article  PubMed  CAS  Google Scholar 

  7. Boateng J, Verghese M, Shackelford L, Walker LT, Khatiwada J, Ogutu S, Williams DS, Jones J, Guyton M, Asiamah D, Henderson F, Grant L, DeBruce M, Johnson A, Washington S, Chawan CB. Selected fruits reduce azoxymethane (AOM)-induced aberrant crypt foci (ACF) in Fisher 344 male rats. Food Chem Toxicol. 2007;45:725–32.

    Article  PubMed  CAS  Google Scholar 

  8. Nishino H, Tokuda H, Satomi Y, Masuda M, Onozuka M, Yamaguchi S, Takayasu J, Tsuruta J, Takemura M, Ii T, Ichiishi E, Kuchide S, Okuda M, Murakoshi M. Cancer chemoprevention by phytochemicals and their related compounds. Asian Pac J Cancer Prev. 2000;1:49–55.

    PubMed  Google Scholar 

  9. Benavente OG, Castillo J, Alcaraz M, Vicente V, Del JA, Ortuno A. Beneficial action of Citrus flavonoids on multiple cancer-related biological pathways. Curr Cancer Drug Targets. 2007;7:795–809.

    Article  Google Scholar 

  10. Garg A, Garg S, Zaneveld LJ, Singla AK. Chemistry and pharmacology of the Citrus bioflavonoid hesperidin. Phytother Res. 2001;15:655–69.

    Article  PubMed  CAS  Google Scholar 

  11. Patricia KW, Dalla SS, Mirian S. Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. J Agric Food Chem. 2005;53:4757–61.

    Article  Google Scholar 

  12. Kamaraj S, Ramakrishnan G, Anandakumar P, Jagan S, Devaki T. Antioxidant and anticancer efficacy of hesperidin in benzo(a)pyrene induced lung carcinogenesis in mice. Invest New Drugs. 2009;27:214–22.

    Article  PubMed  CAS  Google Scholar 

  13. Leef KH, Yehb MH, Kao ST, Hung CM, Liu CJ, Huang YY, Yeh CC. The inhibitory effect of hesperidin on tumor cell invasiveness occurs via suppression of activator protein 1 and nuclear factor-kappa B in human hepatocellular carcinoma cells. Toxicol Lett. 2010;194:42–9.

    Article  Google Scholar 

  14. Andriantsitohaina R, Duluc L, Rodriguez JCG, Valle LGD, Garcia MG, Simard G, Soleti R, Su DF, Perez LV, Wilson JX, Laher I. Systems biology of antioxidants. Clin Sci (Lond). 2012;123:173–92.

    Article  CAS  Google Scholar 

  15. Heijstek MW, Kranenburg O, Rinkes IHMB. Mouse models of colorectal cancer and liver metastases. Dig Surg. 2005;22:16–25.

    Article  PubMed  CAS  Google Scholar 

  16. Ashokkumar P, Sudhandiran G. Protective role of luteolin on the status of lipid peroxidation and antioxidant defence against azoxymethane-induced experimental colon carcinogenesis. Biomed Pharmacother. 2008;62:590–7.

    Article  PubMed  CAS  Google Scholar 

  17. Beelen VA, Spenkelink B, Mooibroek H, Sijtsma L, Bosch D, Rietjens IM, Alink GM. An n-3 PUFA-rich microalgal oil diet protects to a similar extent as a fish oil-rich diet against AOM-induced colonic aberrant crypt foci in F344 rats. Food Chem Toxicol. 2009;47:316–20.

    Article  PubMed  Google Scholar 

  18. Wargovich MJ, Brown VR, Morris J. Aberrant crypt foci: the case for inclusion as a biomarker for colon cancer. Cancers. 2010;2:1705–16.

    Article  CAS  Google Scholar 

  19. Hall PA, Levison DA, Woods AL, Yu CCW, Kellock DB, Watkins JA, Barnes DM, Gillett CE, Camplejohn R, Dover R, Waseem NH, Lane DP. Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin sections: an index of cell proliferation with evidence of deregulated expression in some neoplasms. J Pathol. 1990;162:285–94.

    Article  PubMed  CAS  Google Scholar 

  20. Pikarsky E, Neriah YB. NF-κB inhibition: a double-edged sword in cancer? Eur J Cancer. 2006;42:779–84.

    Article  PubMed  CAS  Google Scholar 

  21. Murakami A, Ohigashi H. Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int J Cancer. 2007;21:2357–63.

    Article  Google Scholar 

  22. Lala PK, Chakraborty C. Role of nitric oxide in carcinogenesis and tumor progression. Lancet Oncol. 2001;2:149–56.

    Article  PubMed  CAS  Google Scholar 

  23. Watanabe K, Kawamori T, Nakatsugi S, Wakabayashi K. COX-2 and iNOS, good targets for chemoprevention of colon cancer. BioFactors. 2000;12:129–33.

    Article  PubMed  CAS  Google Scholar 

  24. Bird RP. Observation and quantification of aberrant crypt foci in murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett. 1987;37:147–51.

    Article  PubMed  CAS  Google Scholar 

  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.

    PubMed  CAS  Google Scholar 

  26. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1972;95:351–8.

    Article  Google Scholar 

  27. Cederbaum AI, Cohen G. In: Packer L, editor, Methods in enzymology. San Diego: Academic Press; 1984. pp. 516–522.

  28. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170–5.

    PubMed  CAS  Google Scholar 

  29. Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47:389–94.

    Article  PubMed  CAS  Google Scholar 

  30. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179:588–90.

    Article  PubMed  CAS  Google Scholar 

  31. Staal GE, Visser J, Veeger C. Purification and properties of glutathione reductase of human erythrocytes. Biochim Biophys Acta. 1969;185:39–48.

    Article  PubMed  CAS  Google Scholar 

  32. Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979;4:67–78.

    Article  Google Scholar 

  33. Omaye ST, Urnbull JB, Sauberlich HE. Selected methods for the determination of ascorbic acid in animal cells, tissues and fluids. Methods Enzymol. 1979;62:1–11.

    Google Scholar 

  34. Desai ID. Vitamin E analysis method for animal tissues. Methods Enzymol. 1984;105:138–43.

    Article  PubMed  CAS  Google Scholar 

  35. Takayama T, Katsuki S, Takahashi Y, Ohi M, Nojiri S, Sakamaki S, Kato J, Kogawa K, Miyake H, Niitsu Y. Aberrant crypt foci of the colon as precursors of adenoma and cancer. N Engl J Med. 1998;339:1277–84.

    Article  PubMed  CAS  Google Scholar 

  36. Miyamoto S, Yasui Y, Ohigashi H, Tanaka T, Murakami A. Dietary flavonoids suppress azoxymethane-induced colonic preneoplastic lesions in male C57BL/KsJ-db/db mice. Chem Biol Interact. 2010;18:276–83.

    Article  Google Scholar 

  37. Gee JM, Hara H, Johnson IT. Suppression of intestinal crypt cell proliferation and aberrant crypt foci by dietary quercetin in rats. Nutr Cancer. 2002;43:193–201.

    Article  PubMed  CAS  Google Scholar 

  38. Kohno H, Tanaka T, Kawabata K, Hirose Y, Sugie S, Tsuda H, Mori H. Silymarin, a naturally occurring polyphenolic antioxidant flavonoid, inhibits azoxymethane-induced colon carcinogenesis in male f344 rats. Int J Cancer. 2002;101:461–8.

    Article  PubMed  CAS  Google Scholar 

  39. Leonardi T, Vanamala J, Taddeo SS, Davidson LA, Murphy ME, Patil BS, Wang N, Carroll RJ, Chapkin RS, Lupton JR, Turner ND. Apigenin and naringenin suppress colon carcinogenesis through the aberrant crypt stage in azoxymethane-treated rats. Exp Biol Med. 2010;23:710–7.

    Google Scholar 

  40. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266:37–56.

    Article  PubMed  CAS  Google Scholar 

  41. Skrzydlewska E, Stankiewicz A, Sulkowska M, Sulkowski S, Kasacka I. Antioxidant status and lipid peroxidation in colorectal cancer. J Toxicol Environ Health. 2001;64:213–22.

    Article  CAS  Google Scholar 

  42. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2000;160:1–40.

    Article  Google Scholar 

  43. Mates JM, Sanchez JF. Antioxidant enzymes and the implications in pathophysiologic processes. Front Biosci. 1999;4:D339–45.

    Article  PubMed  CAS  Google Scholar 

  44. Roberta M, Roberta DB, Rosaria V, Carmela F, Claudio G. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem. 2005;16:577–86.

    Article  Google Scholar 

  45. Kojo S. Vitamin C: basic metabolism and its function as an index of oxidative stress. Curr Med Chem. 2004;11:1041–64.

    Article  PubMed  CAS  Google Scholar 

  46. Burton GW, Ingold KU. Auto oxidation of biological molecules: the antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J Am Chem Soc. 1981;103:64–72.

    Google Scholar 

  47. Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411:342–8.

    Article  PubMed  CAS  Google Scholar 

  48. Bedi A, Pasricha PJ, Akhtar AJ, Barber JP, Bedi GC, Giardiello FM, Zehnbauer BA, Hamilton SR, Jones RJ. Inhibition of apoptosis during development of colorectal cancer. Cancer Res. 1995;55:1811–6.

    PubMed  CAS  Google Scholar 

  49. Galati G, Teng S, Moridani MY, Chan TS, Brien PJO. Cancer chemoprevention and apoptosis mechanisms induced by dietary polyphenolics. Drug Metabol Drug Interact. 2000;17:311–49.

    Article  PubMed  CAS  Google Scholar 

  50. Kubben FJGM, Haesevoets AP, Engels LGJB, Baeten CGMI, Schutte B, Arends JW, Stockbrugger RW, Blijham GH. Proliferating cell nuclear antigen (PCNA): a new marker to study human colonic cell proliferation. Gut. 1994;35:530–5.

    Article  PubMed  CAS  Google Scholar 

  51. Ravichandran K, Velmurugan B, Gu M, Singh RP, Agarwal R. Inhibitory effect of silibinin against azoxymethane-induced colon tumorigenesis in A/J mice. Clin Cancer Res. 2010;16:4595–606.

    Article  PubMed  CAS  Google Scholar 

  52. Velmurugan B, Singh RP, Agarwal R, Agarwal C. Dietary-feeding of grape seed extract prevents azoxymethane-induced colonic aberrant crypt foci formation in Fischer 344 rats. Mol Carcinog. 2010;49:641–52.

    PubMed  CAS  Google Scholar 

  53. Terzic J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138:2101–14.

    Article  PubMed  CAS  Google Scholar 

  54. Perkins ND. Integrating cell-signalling pathways with NF-kappa B and IKK function. Nat Rev Mol Cell Biol. 2007;8:49–62.

    Article  PubMed  CAS  Google Scholar 

  55. Karin M. NF-κB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol. 2009;1:a000141.

    Article  PubMed  Google Scholar 

  56. Wang S, Liu Z, Wang L, Zhang X. NF-kB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol. 2009;6:327–34.

    Article  PubMed  CAS  Google Scholar 

  57. Kojima M, Morisaki T, Sasaki N, Nakano K, Mibu R, Tanaka M, Katano M. Increased nuclear factor-κB activation in human colorectal carcinoma and its correlation with tumor progression. Anticancer Res. 2004;24:675–82.

    PubMed  CAS  Google Scholar 

  58. Rao CV. Nitric oxide signaling in colon cancer chemoprevention. Mutat Res. 2004;555:107–19.

    Article  PubMed  CAS  Google Scholar 

  59. Williams CS, Mann M, Dubois RN. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene. 1999;18:7908–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a fund from the Council of Scientific and Industrial Research (CSIR), New Delhi. We thank Dr. Ramamurthy, Director, Ultra-fast Process Laboratory, University of Madras for his help in confocal imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganapasam Sudhandiran.

Additional information

Responsible Editor: Liwu Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saiprasad, G., Chitra, P., Manikandan, R. et al. Hesperidin alleviates oxidative stress and downregulates the expressions of proliferative and inflammatory markers in azoxymethane-induced experimental colon carcinogenesis in mice. Inflamm. Res. 62, 425–440 (2013). https://doi.org/10.1007/s00011-013-0595-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-013-0595-2

Keywords

Navigation